rotation meshgrid surface with the predefined angel(using rotation matrix)

6 Ansichten (letzte 30 Tage)
Let's say:
x=1:0.2:1.8= [1 1.2 1.4 1.6 1.8];
y=2:0.2:3 = [2 2.2 2.4 2.6 2.8 3];
z=[2 5 2 2 2; 2.1 2.1 2.1 2.1 2.1; 2 2 2 2 2; 3 3 3 3 3; 1 1 1 1 1; 2.5 2.5 2.5 2.5 2.5]; %matrix 6-by-5
[X,Y] = meshgrid(x,y);
surf(X,Y,Z);% the plot show below
The question is: How can I rotate the plot data with the angel=10 (degree), counterclockwise about Z axis, & How can I plot the new meshgrid surface (using the new rotate data) as the below figure?
angel=10;
R=[cosd(angel) -sind(angel) 0;sind(angel) cosd(angel) 0;0 0 1];%the rotation matrix R

Akzeptierte Antwort

ha ha
ha ha am 23 Nov. 2018
Bearbeitet: ha ha am 23 Nov. 2018
clear;clc;x = 1:0.2:1.8;
y = 2:0.2:3;
z=[ 2 5 2 2 2;2.1 2.1 2.1 2.1 2.1;2 2 2 2 2;3 3 3 3 3;1 1 1 1 1;2.5 2.5 2.5 2.5 2.5];
[X,Y] = meshgrid(x,y);
xyc = [mean(x), mean(y)];% Rotate about the center
angel = 30;
R = [cosd(angel), -sind(angel); sind(angel), cosd(angel)];
XY = xyc' + R * ([X(:) Y(:)]-xyc)';
XR = reshape(XY(1,:),size(X));
YR = reshape(XY(2,:),size(Y));
surf(X,Y,z);
hold on;surf(XR,YR,z);

Weitere Antworten (1)

Jan
Jan am 23 Nov. 2018
Bearbeitet: Jan am 23 Nov. 2018
A 2D rotation is sufficient, if you want to rotate the X and Y coordinates only.
x = 1:0.2:1.8; % [1 1.2 1.4 1.6 1.8];
y = 2:0.2:3; % [2 2.2 2.4 2.6 2.8 3];
Z = [2 , 5, 2, 2, 2; 2.1, 2.1, 2.1, 2.1, 2.1; 2, 2, 2, 2, 2; ...
3, 3, 3 3 3; 1 1 1 1 1; 2.5 2.5 2.5 2.5 2.5]; %matrix 6-by-5
[X, Y] = meshgrid(x,y);
subplot(1,2,1)
surf(X,Y,Z);
angel = 10;
R = [cosd(angel), -sind(angel); sind(angel), cosd(angel)];
XY = R * [X(:).'; Y(:).'];
XX = reshape(XY(1, :), size(X));
YY = reshape(XY(2, :), size(Y);
subplot(1,2,2)
surf(XX, YY, Z);
  7 Kommentare
ha ha
ha ha am 24 Nov. 2018
@ Matt J @Bruno Luong @Jan . Can you help me this topic also? Thanks a lot.
https://www.mathworks.com/matlabcentral/answers/431656-rotate-the-3d-point-data-about-z-axis-and-ox-oy
Jan
Jan am 24 Nov. 2018
@haha: Please do not advertise another thread. Imagine the pollution of the forum, if all users would do this. Thanks.
"But as you observed, the surface is rotated and also translate. It is NOT only rotate." - My suggested code was a pure rotation around the origin of the corrdinate system. The modification by removing the mean of the points at first and add them after a rotation includes a translation in addition.

Melden Sie sich an, um zu kommentieren.

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by