allocate values avoiding loop
13 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Rahel Braun
am 8 Nov. 2018
Kommentiert: Cris LaPierre
am 12 Nov. 2018
I have the following matrix [t k p]
1.0000 1.0000 -1.1471
1.0000 2.0000 -1.0689
2.0000 1.0000 -0.8095
2.0000 2.0000 -2.9443
3.0000 1.0000 1.4384
3.0000 2.0000 0.3252
and I want an additional column with the mean of p for every t, hence
1.0000 1.0000 -1.1471 -1.1080
1.0000 2.0000 -1.0689 -1.1080
2.0000 1.0000 -0.8095 -1.8769
2.0000 2.0000 -2.9443 -1.8769
3.0000 1.0000 1.4384 0.8818
3.0000 2.0000 0.3252 0.8818
I can do it with the following code
if true
%Calulate the mean
A=[t p_tk];
p_t= accumarray(A(:,[1]), A(:,2), [], @nanmean, NaN);
% allocate it to long form
p_t_long= NaN(size(t));
for d = 1:max(t)
ind= t ==d;
p_t_long(ind)= p_t(d);
end
end
However, I want to avoid loops since I have a big dataset. Can anybody help?
0 Kommentare
Akzeptierte Antwort
Stephen23
am 8 Nov. 2018
Bearbeitet: Stephen23
am 8 Nov. 2018
Some indexing using the first column does what you want, more efficiently than a loop or unique:
>> M = [1,1,-1.1471;1,2,-1.0689;2,1,-0.8095;2,2,-2.9443;3,1,1.4384;3,2,0.3252]
M =
1.00000 1.00000 -1.14710
1.00000 2.00000 -1.06890
2.00000 1.00000 -0.80950
2.00000 2.00000 -2.94430
3.00000 1.00000 1.43840
3.00000 2.00000 0.32520
>> V = accumarray(M(:,1),M(:,3),[],@mean)
V =
-1.10800
-1.87690
0.88180
>> M(:,4) = V(M(:,1))
M =
1.00000 1.00000 -1.14710 -1.10800
1.00000 2.00000 -1.06890 -1.10800
2.00000 1.00000 -0.80950 -1.87690
2.00000 2.00000 -2.94430 -1.87690
3.00000 1.00000 1.43840 0.88180
3.00000 2.00000 0.32520 0.88180
3 Kommentare
Stephen23
am 12 Nov. 2018
Bearbeitet: Stephen23
am 12 Nov. 2018
>> M = [1,1,1,0.1435;1,1,2,-5.3137;1,2,1,-6.7921;1,2,2,-8.5640;2,1,1,-2.3356;2,1,2,-17.0264;2,2,1,12.6423;2,2,2,8.2006;3,1,1,2.7997;3,1,2,2.6523;3,2,1,-4.9816;3,2,2,13.1869]
M =
1.00000 1.00000 1.00000 0.14350
1.00000 1.00000 2.00000 -5.31370
1.00000 2.00000 1.00000 -6.79210
1.00000 2.00000 2.00000 -8.56400
2.00000 1.00000 1.00000 -2.33560
2.00000 1.00000 2.00000 -17.02640
2.00000 2.00000 1.00000 12.64230
2.00000 2.00000 2.00000 8.20060
3.00000 1.00000 1.00000 2.79970
3.00000 1.00000 2.00000 2.65230
3.00000 2.00000 1.00000 -4.98160
3.00000 2.00000 2.00000 13.18690
>> [~,~,idx] = unique(M(:,1:end-2),'rows'); % indices of row groups.
>> V = accumarray(idx,M(:,end),[],@mean); % mean of each group.
>> M(:,5) = V(idx)
M =
1.00000 1.00000 1.00000 0.14350 -2.58510
1.00000 1.00000 2.00000 -5.31370 -2.58510
1.00000 2.00000 1.00000 -6.79210 -7.67805
1.00000 2.00000 2.00000 -8.56400 -7.67805
2.00000 1.00000 1.00000 -2.33560 -9.68100
2.00000 1.00000 2.00000 -17.02640 -9.68100
2.00000 2.00000 1.00000 12.64230 10.42145
2.00000 2.00000 2.00000 8.20060 10.42145
3.00000 1.00000 1.00000 2.79970 2.72600
3.00000 1.00000 2.00000 2.65230 2.72600
3.00000 2.00000 1.00000 -4.98160 4.10265
3.00000 2.00000 2.00000 13.18690 4.10265
Weitere Antworten (2)
Bruno Luong
am 8 Nov. 2018
A=[...
1.0000 1.0000 -1.1471
1.0000 2.0000 -1.0689
2.0000 1.0000 -0.8095
2.0000 2.0000 -2.9443
3.0000 1.0000 1.4384
3.0000 2.0000 0.3252 ]
[~,~,J] = unique(A(:,1));
p_t= accumarray(J, A(:,3), [], @(x) mean(x,'omitnan'), NaN);
[A p_t(J)]
Result
ans =
1.0000 1.0000 -1.1471 -1.1080
1.0000 2.0000 -1.0689 -1.1080
2.0000 1.0000 -0.8095 -1.8769
2.0000 2.0000 -2.9443 -1.8769
3.0000 1.0000 1.4384 0.8818
3.0000 2.0000 0.3252 0.8818
5 Kommentare
Bruno Luong
am 12 Nov. 2018
My problem was that I didn't know how to use unique() properly with 3 groups,
Stephen already answered by just add 'ROWS' argument, to have one identification (third output) by for each 1x3 row (your "groups").
BTW, you might not noticed by using
accumarray(...,data) ./ accumarray(...,1)
is always fater than
accumarray(...,data, ..., @mean)
if speed is matter for you.
Cris LaPierre
am 8 Nov. 2018
grpAvg = splitapply(@mean,p,t);
pAvg = grpAvg(t);
[t k p pAvg]
2 Kommentare
Cris LaPierre
am 8 Nov. 2018
Bearbeitet: Cris LaPierre
am 8 Nov. 2018
If your grouping variable is not as clean as it is in this example, you can use the findgroups function to create an index of the unique values in your grouping variable.
Cris LaPierre
am 12 Nov. 2018
Using your updated matrix from a comment, here is a robust way to achieve what you want using findgroups and splitapply (assuming variable t,k,l, and p exist and represent the columns of M):
M = [t k l p]
G = findgroups(t,k);
grpAvg = splitapply(@mean,p,G);
pAvg = grpAvg(G);
V = [t k l p pAvg]
The original matrix M is
M =
1.0000 1.0000 1.0000 0.1435
1.0000 1.0000 2.0000 -5.3137
1.0000 2.0000 1.0000 -6.7921
1.0000 2.0000 2.0000 -8.5640
2.0000 1.0000 1.0000 -2.3356
2.0000 1.0000 2.0000 -17.0264
2.0000 2.0000 1.0000 12.6423
2.0000 2.0000 2.0000 8.2006
3.0000 1.0000 1.0000 2.7997
3.0000 1.0000 2.0000 2.6523
3.0000 2.0000 1.0000 -4.9816
3.0000 2.0000 2.0000 13.1869
And resulting matrix V is
V =
1.0000 1.0000 1.0000 0.1435 -2.5851
1.0000 1.0000 2.0000 -5.3137 -2.5851
1.0000 2.0000 1.0000 -6.7921 -7.6780
1.0000 2.0000 2.0000 -8.5640 -7.6780
2.0000 1.0000 1.0000 -2.3356 -9.6810
2.0000 1.0000 2.0000 -17.0264 -9.6810
2.0000 2.0000 1.0000 12.6423 10.4215
2.0000 2.0000 2.0000 8.2006 10.4215
3.0000 1.0000 1.0000 2.7997 2.7260
3.0000 1.0000 2.0000 2.6523 2.7260
3.0000 2.0000 1.0000 -4.9816 4.1026
3.0000 2.0000 2.0000 13.1869 4.1026
Siehe auch
Kategorien
Mehr zu Loops and Conditional Statements finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!