Incorrect class for expression 'fstate': expected 'double' but found 'function_handle'.
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to transfer unscented kalman filter code from MATLAB to C code and I have received the following error:
Incorrect class for expression 'fstate': expected 'double' but found 'function_handle'. which took place on line 0. I also received an error for the function [x, P] = ukf(f,x,P,h,z,Q,R); % ekf
I am not sure how to fix this, but I believe it has something to do with the data types. Here is the C code:
function [x,P]=ukf(fstate,x,P,hmeas,z,Q,R)
% UKF Unscented Kalman Filter for nonlinear dynamic systems
% [x, P] = ukf(f,x,P,h,z,Q,R) returns state estimate, x and state covariance, P
% for nonlinear dynamic system (for simplicity, noises are assumed as additive):
% x_k+1 = f(x_k) + w_k;
% z_k = h(x_k) + v_k;
% where w ~ N(0,Q) meaning w is gaussian noise with covariance Q
% v ~ N(0,R) meaning v is gaussian noise with covariance R
% Inputs: f: function handle for f(x)
% x: "a priori" state estimate
% P: "a priori" estimated state covariance
% h: fanction handle for h(x)
% z: current measurement
% Q: process noise covariance
% R: measurement noise covariance
% Output: x: "a posteriori" state estimate
% P: "a posteriori" state covariance
%
% Example:
%{
n=3; %number of state
q=0.1; %std of process
r=0.1; %std of measurement
Q=q^2*eye(n); % covariance of process
R=r^2; % covariance of measurement
f=@(x)[x(2);x(3);0.05*x(1)*(x(2)+x(3))]; % nonlinear state equations
h=@(x)x(1); % measurement equation
s=[0;0;1]; % initial state
x=s+q*randn(3,1); %initial state % initial state with noise
P = eye(n); % initial state covraiance
N=20; % total dynamic steps
xV = zeros(n,N); %estmate % allocate memory
sV = zeros(n,N); %actual
zV = zeros(1,N);
for k=1:N
z = h(s) + r*randn; % measurments
sV(:,k)= s; % save actual state
zV(k) = z; % save measurment
[x, P] = ukf(f,x,P,h,z,Q,R); % ekf
xV(:,k) = x; % save estimate
s = f(s) + q*randn(3,1); % update process
end
for k=1:3 % plot results
subplot(3,1,k)
plot(1:N, sV(k,:), '-', 1:N, xV(k,:), '--')
end
%}
% Reference: Julier, SJ. and Uhlmann, J.K., Unscented Filtering and
% Nonlinear Estimation, Proceedings of the IEEE, Vol. 92, No. 3,
% pp.401-422, 2004.
%
% By Yi Cao at Cranfield University, 04/01/2008
%
L=numel(x); %number of states
m=numel(z); %number of measurements
alpha=1e-3; %default, tunable
ki=0; %default, tunable
beta=2; %default, tunable
lambda=alpha^2*(L+ki)-L; %scaling factor
c=L+lambda; %scaling factor
Wm=[lambda/c 0.5/c+zeros(1,2*L)]; %weights for means
Wc=Wm;
Wc(1)=Wc(1)+(1-alpha^2+beta); %weights for covariance
c=sqrt(c);
X=sigmas(x,P,c); %sigma points around x
[x1,~,P1,~]=ut(fstate,X,Wm,Wc,L,Q); %unscented transformation of process
X1=sigmas(x1,P1,c); %sigma points around x1
X2=X1-x1(:,ones(1,size(X1,2))); %deviation of X1
[z1,~,P2,Z2]=ut(hmeas,X1,Wm,Wc,m,R); %unscented transformation of measurments
P12=X2*diag(Wc)*Z2'; %transformed cross-covariance
K=P12*inv(P2);
x=x1+K*(z-z1); %state update
P=P1-K*P12'; %covariance update
function [y,Y,P,Y1]=ut(f,X,Wm,Wc,n,R)
%Unscented Transformation
%Input:
% f: nonlinear map
% X: sigma points
% Wm: weights for mean
% Wc: weights for covraiance
% n: numer of outputs of f
% R: additive covariance
%Output:
% y: transformed mean
% Y: transformed smapling points
% P: transformed covariance
% Y1: transformed deviations
L=size(X,2);
y=zeros(n,1);
Y=zeros(n,L);
% pragma omp parallel for
%pragma omp ...
for k=1:L
Y(:,k)=f(X(:,k));
y=y+Wm(k)*Y(:,k);
end
Y1=Y-y(:,ones(1,L));
P=Y1*diag(Wc)*Y1'+R;
function X=sigmas(x,P,c) % We will parallelize this function as it is
%wil reduce the cost of computing this algorthim because
%cholesky factorization is costly to implement in this case.
%Sigma points around reference point
%Inputs:
% x: reference point
% P: covariance
% c: coefficient
%Output:
% X: Sigma points
A = c*chol(P)';
Y = x(:,ones(1,numel(x)));
X = [x Y+A Y-A];
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Online Estimation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!