why arrayfun does NOT improve my struct array operation performance
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
here is the input data:
% @param Landmarks:
% Landmarks should be 1*m struct.
% m is the number of training set.
% Landmark(i).data is a n*2 matrix
old function:
function Landmarks=CenterOfGravity(Landmarks)
% align center of gravity
for i=1 : length(Landmarks)
Landmarks(i).data=Landmarks(i).data - ones(size(Landmarks(i).data,1),1)...
*mean(Landmarks(i).data);
end
end
new function which use arrayfun:
function [Landmarks] = center_to_gravity(Landmarks)
Landmarks = arrayfun(@(struct_data)...
struct('data', struct_data.data - repmat(mean(struct_data.data), [size(struct_data.data, 1), 1]))...
,Landmarks);
end %function center_to_gravity
when using profiler, I find the usage of time is NOT what I expected:
Function Total Time Self Time*
CenterOfGravity 0.011s 0.004 s
center_to_gravity 0.029s 0.001 s
Can someone tell me why?
0 Kommentare
Akzeptierte Antwort
Jan
am 23 Jun. 2012
ARRAYFUN is not more efficient than a FOR loop, because it has a FOR loop internally.
Another idea:
for i = 1 : length(Landmarks)
data = Landmarks(i).data;
Landmarks(i).data= bsxfun(@minus, data, sum(data, 1) / size(data, 1));
end
Reduce the repeated access to a field, SUM/LENGTH is faster than MEAN, BSXFUN avoid the creation of a temporary array.
Or:
for i = 1 : length(Landmarks)
data = Landmarks(i).data;
m = sum(data, 1) / size(data, 1);
data(:, 1) = data(:, 1) - m(1);
data(:, 2) = data(:, 2) - m(2);
Landmarks(i).data = data;
end
3 Kommentare
Weitere Antworten (1)
Walter Roberson
am 23 Jun. 2012
Also, profile disables a number of optimizations, so you cannot use profiler to determine full execution rate. Try timeit
Siehe auch
Kategorien
Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!