Store recursive intermediate values

15 Ansichten (letzte 30 Tage)
cedric W
cedric W am 7 Sep. 2018
Bearbeitet: Stephen23 am 10 Sep. 2018
I'm trying to save intermediate values when calling recursive function without using global variables. I don't find anything suiting my issue on mathworks topics and I'd need help.
I'm trying to replicate Legendre polynomials. For example I have to compute the 6-th order polynomial, but to compute so I need the first 5-th orders. But I'd like to keep the intermediates polynomails/results instead of only the 6-th polynom.
Here's the funcion I'm using and that I need to adjust:
function Y = Laguerre(X, k)
if (k==0)
Y=1;
elseif (k==1)
Y=1-X;
else
Y=(1/k)*((2*k-1-X).*Laguerre(X,k-1)-(k-1)*Laguerre(X,k-2));
end
end
Any clue could be appreciated !
  4 Kommentare
cedric W
cedric W am 7 Sep. 2018
Bearbeitet: cedric W am 7 Sep. 2018
X is the point at which we evaluate the k-th order Laguerre polynom
Keep all of the intermediate values
i.e. at the point x=3, the 3-rd order is polynom has a value of -0.5, the 2nd value of -2, the first order result is 1
Stephen23
Stephen23 am 8 Sep. 2018
"Keep all of the intermediate values"
It is not clear what you mean by this. Which of these do you mean?:
  • keep intermediate Y values that occur within the recursive function, that are otherwise discarded when the function returns.
  • keep all output values (i.e. the final Y value) from the function, over a range of X.
  • some other definition of "intermediate value".... ?
You might know what you want, but we don't. Please explain exactly which values you are talking about, with examples.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Stephen23
Stephen23 am 7 Sep. 2018
Method one: nested function: which lets you keep any intermediate values that you want:
function [Yout,C] = Laguerre(Xin, kin)
C = []; to collect any intermediate values
Yout = mynest(Xin,kin)
%
function Y = mynest(X,k)
if (k==0)
Y=1;
elseif (k==1)
Y=1-X;
else
Y=(1/k)*((2*k-1-X).*mynest(X,k-1)-(k-1)*mynest(X,k-2));
end
C(end+1) = .... anything you want
end
end
Method two: a second output argument:
function [Y,C] = Laguerre(Xin, kin)
[Y,C] = mysub(Xin,kin)
end
function [Y,C] = mysub(X,k)
if (k==0)
Y=1;
elseif (k==1)
Y=1-X;
else
[V1,C1] = mysub(X,k-1);
[V2,C2] = mysub(X,k-2);
Y=(1/k)*((2*k-1-X).*V1-(k-1)*V2);
end
C(end+1) = ... something with C1,C2
end
  4 Kommentare
cedric W
cedric W am 10 Sep. 2018
Bearbeitet: cedric W am 10 Sep. 2018
I'm answering here for both your comments.
Indeed let's take an example:
Say X is the point where to evaluate the function, k is the order of the polynom, then 4 first-order Laguerre Polynomials are the followings:
1/ Y1(X)=1 ; (k=0)
2/ Y2(X)=1-X ; (k=1)
3/ Y3(X)=(1/3)*((2*3-1-X)*Y2(X) - (3-1)*Y1(X))) ; (k=2)
4/ Y4(X)=(1/4)*((2*4-1-X)*Y3(X) - (4-1)*Y2(X))) ; (k=3)
Therefore for k>=2, we need previous polynomials.
The issue is that the function I coded so far, if am evaluating Laguerre(1,3), the output will be Y4(1)= -0.667. But I would instead like to have an output Y=[Y1(1),Y2(1),Y3(1),Y4(1)]=[1,0,-0.5,0.667]
Intermediate values are then Y1, Y2 and Y3.
Stephen23
Stephen23 am 10 Sep. 2018
Bearbeitet: Stephen23 am 10 Sep. 2018
Using a nested function:
function C = Laguerre(Xin, kin)
C = nan(1,1+kin);
mynest(Xin,kin);
%
function Y = mynest(X,k)
switch k
case 0
Y = 1;
case 1
Y = 1-X;
otherwise
Y = (1/k)*((2*k-1-X).*mynest(X,k-1)-(k-1)*mynest(X,k-2));
end
C(k+1) = Y;
end
end
And tested:
>> Laguerre(1,3)
ans =
1 0 -0.5 -0.66667
Note that some k values repeat (e.g. k=1 for your example), in which case only the last Y value will be stored for that k value.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Polynomials finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by