Can I use grayscale image in Lab color space
    4 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    S.M.
 am 29 Aug. 2018
  
    
    
    
    
    Kommentiert: S.M.
 am 5 Sep. 2018
            Hello, i tried one image processing tutorial, which i found on YouTube. Basically it's about segmentation of salami pieces on a pizza. For that i have to convert an RGB-image into the CIELAB color space and define different classes. This code works perfectly fine.
Now my question is: Can I use this script to segment things from a gray-scale image? Or do I have to convert the grayscale image into the RGB format?
Here the code:
% Load picture
img = imread('Pizza.jpg');
% Show original pic
subplot(4,3,1);
imshow(img);
% Convert into lab
labimg = rgb2lab(img);
% Adjust and show color channels
subplot(4,3,2);
imshow(labimg(:,:,1),[]);
subplot(4,3,3);
imshow(labimg(:,:,2),[]);
subplot(4,3,4);
imshow(labimg(:,:,3),[]);
% Define classes
salami = labimg(508:603, 200:305, :);
tomato = labimg(634:729, 326:457, :);
plate  = labimg(645:708, 615:699, :);
backgr = labimg(3:56, 5:53, :);
% Save averages from classes in a matrix
classes = [[mean2(salami(:,:,2)), mean2(salami(:,:,3))]', [mean2(tomato(:,:,2)), mean2(tomato(:,:,3))]', [mean2(plate(:,:,2)), mean2(plate(:,:,3))]', [mean2(backgr(:,:,2)), mean2(backgr(:,:,3))]']; 
[height, width, channels] = size(labimg);
classimg = zeros(height,width);
for i = 1:height
    for j = 1:width
        classimg(i,j) = nearestNeighbour2d(labimg(i,j,2:3), classes);
    end
end
% Show class-image 
subplot(4,3,5);
imshow(classimg, []);
% Extraction of salami
salamiclass = (classimg ==1);
salamiclass = double(salamiclass);
subplot(4,3,6);
imshow(salamiclass, []);
% Use erode
se = strel('disk',28);
erodedBW = imerode(salamiclass, se);
subplot(4,3,7);
imshow(erodedBW, []);
% Extraction of the regioons
labels = bwlabel(erodedBW);
subplot(4,3,8);
imshow(labels, []);
numLabels = max(max(labels));
regions = zeros(5,numLabels);
for ii = 1:numLabels
    [xx, yy] = find(labels==ii);
    regions(1:5,ii) = [min(yy) min(xx) max(yy) max(xx) size(xx,1)]';
end
circles = zeros(numLabels,3);
for ii=1:numLabels
    circles(ii,1:3) = [regions(3,ii)-(regions(3,ii)-regions(1,ii))/2 regions(4,ii)-(regions(4,ii)-regions(2,ii))/2 max([regions(3,ii)-regions(1,ii) regions(4,ii)-regions(2,ii)])];
end
img = draw('Circles', img, circles, [0 0 255], 5);
subplot(4,3,9);
imshow(img, []);
Akzeptierte Antwort
  Walter Roberson
      
      
 am 5 Sep. 2018
        In theory it would be possible to calculate the L component directly knowing the grayscale value and making assumptions about the whitepoint . The a and b components would both be 0 for true grayscale. You would use that code to replace the labimg = rgb2lab(img); call.
In practice, it is far easier just to code
labimg = rgb2lab( repmat(img, [1 1 3]) );
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!