Finding x such that 1 is eigenvalue
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Harel Harel Shattenstein
am 17 Jun. 2018
Beantwortet: John D'Errico
am 17 Jun. 2018
Let A=[1 2 3;3 x 4; 1 2 5], find x such that 1 is eigenvalue of the matrix
syms x
det(A=[1 2 3;3 x 4; 1 2 5]-eye(3));
Which function can I use to find the roots of the polynomial I got
0 Kommentare
Akzeptierte Antwort
John D'Errico
am 17 Jun. 2018
You are trying to do too much in one line. Making your code super compact does nothing, except make it unreadable. And it did not work here for you, as you found out.
First, you cannot assign something to a variable like A in the middle of a line of code.
If 1 is an eigenvalue of A, then it is true that det(A-1*eye(3)) must be zero.
syms x
A = [1 2 3;3 x 4; 1 2 5];
xsol = solve(det(A - eye(3)) == 0)
xsol =
5/3
Testing that result, we see that:
eig(subs(A,x,xsol))
ans =
1
10/3 - 178^(1/2)/3
178^(1/2)/3 + 10/3
So, you were close. What you did wrong was to try to do too much in one line of code. And then you failed to try to apply solve. Since your goal was to solve something, why not consider solve?
0 Kommentare
Weitere Antworten (1)
James Tursa
am 17 Jun. 2018
Bearbeitet: James Tursa
am 17 Jun. 2018
>> syms x
>> det([1 2 3;3 x 4; 1 2 5]-eye(3))
ans =
5 - 3*x
>> solve(ans)
ans =
5/3
>> A = [1 2 3;3 5/3 4; 1 2 5]
A =
1.0000 2.0000 3.0000
3.0000 1.6667 4.0000
1.0000 2.0000 5.0000
>> eig(A)
ans =
7.7806
-1.1139
1.0000
0 Kommentare
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!