How I can check the system solution with a Matlab ODE function.
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Camilo Sánchez
am 10 Jun. 2018
Kommentiert: Camilo Sánchez
am 11 Jun. 2018
dydt(1) = 1.3*(y(3) - y(1)) + 10400*exp(20.7 - 1500/y(1))*y(2);
dydt(2) = 1880 * (y(4) - y(2) * (1+exp(20.7 - 1500/y(1))));
dydt(3) = 1752 - 269*y(3) + 267*y(1);
dydt(4) = 0.1 + 320*y(2) - 321*y(4)
y(t0)= [50,0,600,1]
0 Kommentare
Akzeptierte Antwort
Jan
am 11 Jun. 2018
function main
t0 = 0;
y0= [50,0,600,1]
[t,y] = ode45(@fcn, [t0, 7], y0);
plot(t, y);
end
function dydt = fcn(t, y)
dydt = zeros(4,1);
dydt(1) = 1.3*(y(3) - y(1)) + 10400*exp(20.7 - 1500/y(1))*y(2);
dydt(2) = 1880 * (y(4) - y(2) * (1+exp(20.7 - 1500/y(1))));
dydt(3) = 1752 - 269*y(3) + 267*y(1);
dydt(4) = 0.1 + 320*y(2) - 321*y(4);
end
3 Kommentare
Jan
am 11 Jun. 2018
I guessed the endpoint 7. This takes a long time, in fact. If you use 2, ODE45 can solve this in seconds. ODE45 is designed to integrate non-stiff ODEs. If your system is stiff, use e.g. ode23s.
tic
[t,y] = ode23s(@fcn, [t0, 7], y0);
toc
% Elapsed time is 0.045184 seconds.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!