Solve an ODE with runge kutta method
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I'm trying to solve the following eqaution using runge kutta method. I have not seen any examples of ODE45 or ODE15s for equations in this type.
Ay''+Byy'+Cy'+Dy+E=0; where A,B,C,D and E are constants.
Boundary conditions are y(0)=0; y(l)= 2.3
Thanks
0 Kommentare
Akzeptierte Antwort
Jarrod Rivituso
am 25 Mär. 2011
Ah, the glory of state-space. First, make the substitution
u = y'
Then, you have a system of two equations
u' = (1/A)*(-B*y*u-C*u-D*y-E)
y' = u
Now you can use ode45...
>> [t,y] = ode45(@xdot,[0 1],[0;0]);
where the function xdot is...
function dx = xdot(t,x)
A = 1;
B = 1;
C = 1;
D = 1;
E = 1;
u = x(1);
y = x(2);
dx(1,1) = (1/A)*(-B*y*u-C*u-D*y-E);
dx(2,1) = y;
Note that I didn't really understand your initial conditions. For your differential equation, you would need to specify an initial y and y', I believe.
0 Kommentare
Weitere Antworten (1)
Jan
am 25 Mär. 2011
If you have "boundary conditions", you need a different solver, see bvp4c and bvp5c. But two conditions are not enough to find a solution for of 2nd order ODE - you need an additional condition.
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!