multidimensional numerical integration without large matrices
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a function of 4 variables which neeeds to be integrated over a 3D space. The integral does not have an analytical solution so it needs to be done numerically. The function is also very sensitive and easily becomes unstable if the step size is too small. The way I've done it previously is as
[X1,X2,X3,X4]=meshgrid(x1,x2,x3,x4)
f=numerically evaluated function using above mesh (so this is a 4D matrix)
trapz(X1,f,3)
trapz(X1,f,2)
trapz(X1,f,1)
This however, bottlenecks very fast when I need to increase the evaluation points to make it stable (runs out of memory). So my question is if there is another way to do this, without having 4D matrices.
I tried something like
g1=@(x1,x2,x3) integral(@(x4) f(x1,x2,x3,x4,x4(1),x4(end));
g2=@(x1,x2) integral(@(x3) g1(x1,x2,x3,x3(1),x3(end));
g3=@(x1) integral(@(x1) g2(x1,x2,x3,x4, x2(1),x2(end));
g3(x1)
which does not work (gets matrix dimension mismatch error despite correctly vectorized function), as well as
g=@(x1) integral3(@(x2,x3,x4) F(x1,x2,x3,x4),x2(1),x2(end),x3(1),x3(end),x4(1),x4(end))
which fails the global error test, returning NaN.
The function in question is
F=@(x1,x2,x3,x4) sqrt(c./(1i.*x4.*a.*b)) .* exp((-1i.*pi./(x4.*b)).* (2.*x3.*x1+b./a.*x2-c./a.*x3.^2-a./c.*(x1+b./a.*x2).^2) ).*heaviside(abs(x3)-d) ;
a,b,c,d are constants
Would highly appriciate any suggestions!
2 Kommentare
Walter Roberson
am 19 Mär. 2018
"which fails the global error test"
? Could you explain that a bit more?
Antworten (3)
Unai San Miguel
am 20 Mär. 2018
I don't like meshgrid even for 2 variables, so I would use ndgrid instead
[X1, X2, X3, X4] = ndgrid(x1, x2, x3, x4);
This way X1(i, j, k, l) = x1(i), X2(i, j, k, l) = x2(j) ans so on. Your array f would be of size [n1, n2, n3, n4], being n1 = length(x1), .... Then you could use trapz but with the lowercase-single dimensional variables.
g(x1, x2, x3) = int(f, dx4) ~ |trapz(x4, f, 4)|
h(x1, x2) = int(g, dx3) ~ |trapz(x3, trapz(x4, f, 4), 3)|, ...
So your final function would be
g_1 = trapz(x2, trapz(x3, trapz(x4, f, 4), 3), 2);
an array of size n1. I haven't done integrals of more than 2 variables, but if you can handle the 4D f array this looks doable (you are always reducing the size of the arrays).
1 Kommentar
Torsten
am 20 Mär. 2018
Bearbeitet: Torsten
am 20 Mär. 2018
x2min = ...;
x2max = ...;
x3min = ...;
x3max = ...;
x4min = ...;
x4max = ...;
a = ...;
b = ...;
c = ...;
d = ...;
F=@(x1,x2,x3,x4) sqrt(c./(1i.*x4.*a.*b)) .* exp((-1i.*pi./(x4.*b)).* (2.*x3.*x1+b./a.*x2-c./a.*x3.^2-a./c.*(x1+b./a.*x2).^2) ).*heaviside(abs(x3)-d) ;
g=@(x1) integral3(@(x2,x3,x4) F(x1,x2,x3,x4),x2min,x2max,x3min,x3max,x4min,x4max);
g(2.5)
does not work ?
Which values do you use for the "..." indicated constants ?
Best wishes
Torsten.
2 Kommentare
Torsten
am 20 Mär. 2018
What if you split the integral into three integrals
x3min <= x3 <= -d
-d <= x3 <= d
d <= x3 <= x3max
and remove the heaviside term in F ?
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!