How to direct the variable in the genetic algorithm function to workspace function?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Soon Kok Yew
am 12 Mär. 2018
Kommentiert: Soon Kok Yew
am 13 Mär. 2018
variable1 = input('Variable 1: ');
variable2 = input('Variable 2: ');
variable3 = input('Variable 3: ');
variable4 = input('Variable 4: ');
function y = myfunc(x)
y = x(1)*variable1 + x(2)*variable 2
function [c,ceq] = constraint(x)
c = [x(1)+x(2)-variable3;x(1)*x(2)-variable4];
ceq = [];
ObjectiveFunction = @myfunc;
nvars = 2; % Number of variables
LB = [0 0]; % Lower bound
UB = [100 100]; % Upper bound
ConstraintFunction = @constraint;
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB,ConstraintFunction);
As shown in the code above, I am trying to optimize the objective function based on some inputs from user. However, the function handler does not permit the variable from workspace direct to the function even their name is same. Is there any solution for this case?
0 Kommentare
Akzeptierte Antwort
Stephen23
am 12 Mär. 2018
Bearbeitet: Stephen23
am 12 Mär. 2018
You need to parameterize the objective function, which can be achieved either using an anonymous function or nested functions:
function [x,fval] = myga(v1,v2,v3,v4,LB,UB)
[x,fval] = ga(@myfunc,2,[],[],[],[],LB,UB,@constraint);
function y = myfunc(x)
y = x(1)*v1 + x(2)*v2;
end
function [c,ceq] = constraint(x)
c = [x(1)+x(2)-v3;x(1)*x(2)-v4];
ceq = [];
end
end
and call it like this:
var1 = str2double(input('Variable 1: ','s'));
var2 = str2double(input('Variable 2: ','s'));
var3 = str2double(input('Variable 3: ','s'));
var4 = str2double(input('Variable 4: ','s'));
[x,fval] = myga(var1,var2,var3,var4,[0,0],[100,100])
Method two: anonymous functions: you could do this (with version R2016b or later, where functions may be defined at the end of a script):
var1 = str2double(input('Variable 1: ','s'));
var2 = str2double(input('Variable 2: ','s'));
var3 = str2double(input('Variable 3: ','s'));
var4 = str2double(input('Variable 4: ','s'));
LB = [0,0];
UB = [100,100];
objfun = @(x)myfunc(x,var1,var2);
confun = @(x)constraint(x,var3,var4);
[x,fval] = ga(objfun,2,[],[],[],[],LB,UB,confun);
function y = myfunc(x,v1,v2)
y = x(1)*v1 + x(2)*v2;
end
function [c,ceq] = constraint(x,v3,v4)
c = [x(1)+x(2)-v3;x(1)*x(2)-v4];
ceq = [];
end
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Genetic Algorithm finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!