ode 45 giving the wrong solution

2 Ansichten (letzte 30 Tage)
tomer polsky
tomer polsky am 15 Feb. 2018
Kommentiert: James Tursa am 15 Feb. 2018
hello i am trying to use ode command to solve this eqution using ode command :
function [ x_diff_ode ] = x_ode_method( t,x )
global A_a A_b B_a B_b f U t_on C_a C_b
ratio=rem(t,(1/f));
S_switch_a=ratio<t_on;
A_total=A_a*(S_switch_a)+A_b* not(S_switch_a);
B_total=B_a*(S_switch_a)+B_b*not(S_switch_a);
x_diff_ode= A_total*x+ B_total*U;
end
how ever this is giving me the wrong plot , and when i did it numericly using oilers method i got the the right plot ,here is the code using oile'rs method :
function [x_zigzag,t,z,V_R_oilers_theory,switch_a,t_switch] = eulers_method_numeric_sulution( A_a,A_b,B_a,B_b,f,U,t_on,C_a,C_b,number_of_points, number_of_cycles )
T=1/f;
% number_of_cycles=900;
% samples_per_cycle=300;
total_samples=number_of_points;
run_time=(T)*(number_of_cycles);
x1_zigzag=[0;0;0;0];
t=linspace(0,run_time, total_samples+1);
% t_delta=(T)/(samples_per_cycle);
t_delta=(run_time-0)/(total_samples+1);
for i=1:total_samples
ratio(i)=rem(t(i),(T));
S_switch_a(i)=ratio(i)>t_on;
A_total=A_a* S_switch_a(i)+A_b* not(S_switch_a(i));
B_total=B_a* S_switch_a(i)+B_b*not(S_switch_a(i));
C_total=C_a* S_switch_a(i)+C_b*not(S_switch_a(i));
x1_zigzag(:,i+1)=x1_zigzag(:,i)+t_delta*( A_total*x1_zigzag(:,i)+B_total*U);
V_R_oilers_theory(:,i+1)=C_total*x1_zigzag(:,i+1);
end
x_zigzag= x1_zigzag;
t=t;
z=t_delta;
V_R_oilers_theory=V_R_oilers_theory;
switch_a=S_switch_a;
t_switch=total_samples;
end
my question is why the ode command fails and giving me the wrong plot ? and how can i fix it ?
  3 Kommentare
Jan
Jan am 15 Feb. 2018
"oilers method"?! The famous mathematician was called Euler, Leonhard Euler.
James Tursa
James Tursa am 15 Feb. 2018
Maybe Wayne Gretzky is involved with this somehow ...

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Jan
Jan am 15 Feb. 2018
why the ode command fails and giving me the wrong plot
You did not show us your "ode command".
Your function to be integrated contains a discontinuity:
S_switch_a = ratio < t_on;
This is a DON'T for the numerical integration, because standard integrators as Matlab ODE45 are designed to handle smooth functions only. See http://www.mathworks.com/matlabcentral/answers/59582#answer_72047

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by