How to represent waveform (sum of sinusoids) in complex notation
23 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I have a sum sinusoids to make a waveform, each sinusoid has a different phase attached to it.
clear
f = (20.2 : 0.01 : 21.2)*10^9;
Fs = 5*max(f);
Ts = 1/Fs;
end_t = 0.2*10^(-6);
dt = 0 : Ts : end_t-Ts;
for a = 1:length(f)-1
random_phase = 2*pi*rand(1,1);
%y(a,:) = 2 * sin(2*pi .* f(a) .* dt + random_phase);
end
waveform = sum(abs(y))
plot(dt,waveform)
I need to amplify this waveform, but the amplification being applied is in the form of a vector, it has an increase amplitude (gain) component and also a phase change component.
So the waveform is amplified but also subjected to phase change at instances in time.
To do this, my original waveform must be complex so I can multiply two complex numbers together to get the amplified waveform.
How do I do get my original code in a complex form?
0 Kommentare
Akzeptierte Antwort
Jan
am 9 Jan. 2018
Bearbeitet: Jan
am 9 Jan. 2018
What about:
y(f,:) = cos(2*pi .* f .* dt + random_phase) + ...
1i * sin(2*pi .* f .* dt + random_phase);
Or equivalently:
y(f,:) = exp(1i * (2*pi .* f .* dt + random_phase));
2 Kommentare
Jan
am 9 Jan. 2018
Trimmed down to what? A complex sin wave can be expressed as
y = A * exp(k * t + a)
to define amplitude, frequency and phase shift. Together with the Euler formula: exp(ix) = cos(x) + i * sin(x) you get the shown code.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Continuous Waveforms finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!