How to use lagrange equations for pendulum
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Below is the code for symbolically simulating a pendulum, the plot produce doesn't seem to be the response of a pendulum swinging back and forth.
% Use Lagrange equations
% d / dt (d L / d (d qi / dt)) - d L / d qi = Q
%
% Simple pendulum
%%Without constraings
% Use angle as dof
% v = L d theta / dt
% K = 1/2 m v^2
% V = -mg L cos(theta)
% L = K - V = 1/2 m v^2 + m g L cos(theta)
syms Len d theta(t) m g
arc = Len * theta;
v = diff(arc,t);
K = 1/2 * m * v^2;
V = m*g*Len*(1-cos(theta));
L = K - V;
syms dtheta_dt
L1 = subs(L,diff(theta(t), t), dtheta_dt);
L2 = subs(diff(L1,dtheta_dt), dtheta_dt, diff(theta,t));
L3 = diff(L2,t);
syms thta
L4 = subs(L, theta, thta);
L5 = diff(L4, thta);
L6 = subs(L5, thta, theta);
eqn_pend = L3 + L6 == 0
[eqs_pend,vars_pend] = reduceDifferentialOrder(eqn_pend,theta(t))
[Mpend,Fpend] = massMatrixForm(eqs_pend,vars_pend)
syms Dtheta_Vart(t) dthta_dt;
MM = matlabFunction(Mpend, 'vars', {t, [thta; dthta_dt], Len,g,m})
Fpend1 = subs(Fpend, theta(t), thta);
Fpend2 = subs(Fpend1, Dtheta_Vart(t), dthta_dt);
FF = matlabFunction(Fpend2,'vars',{t,[dthta_dt;thta],Len,g,m})
MM_Fixed = @(t, in2)MM(t, in2, 5, 9.8, 100);
FF_Fixed = @(t, in2)FF(t, in2, 5, 9.8, 100);
opt = odeset('Mass', MM_Fixed);
[ts, ys]=ode15s(FF_Fixed, [0,10], [.0001; 0], opt);
figure;
plot(ts, ys);
legend('angle','rate');
2 Kommentare
John D'Errico
am 8 Dez. 2017
Bearbeitet: John D'Errico
am 8 Dez. 2017
No. This is arbitrary code that you obtained from some source. That it truly simulates a pendulum is not proven at all. Contact the source that provided the code, and ask them.
Antworten (1)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!