Problems solving cupled 2nd Order ODE with od45

5 Ansichten (letzte 30 Tage)
Erik Kostic
Erik Kostic am 28 Nov. 2017
Kommentiert: Dariusz Skibicki am 16 Mär. 2023
Hello.
I am given the task of simulating the two-dimensional motion of a magnetic pendulum in the x-y-plane. The problem comes down in solving this system of cupled 2nd order ordinary differential equation:
x'' + R*x' + sum_{i=1}^3 (m_i-x)/(sqrt((m1_i-x)^2 + (m2_i-y)^2 + d^2))^3 + G*x == 0
y'' + R*y' + sum_{i=1}^3 (m_i-y)/(sqrt((m1_i-x)^2 + (m2_i-y)^2 + d^2))^3 + G*y == 0
Those eqations discribe the motion in the plane. I know i can use the method "ode45" to solve such a problem, given some initial values.
I have tried it a few times, but didn't came to a solution.
I hope someone can help me. (x',y') = 0 no initial velocity and position (x,y) could be anywhere.
GREETINGS
  4 Kommentare
Torsten
Torsten am 29 Nov. 2017
Why don't you just show what you have so far ?
Best wishes
Torsten.
Erik Kostic
Erik Kostic am 29 Nov. 2017
Bearbeitet: Torsten am 29 Nov. 2017
Hello Torsten
clear all, clc;
%%Constants
R = 0.2;
C = 0.3;
d = 0.5;
a = 1;
%%Position of magnets with input a,d > 0
mag1 = [ a/2, -sqrt(3)*a, -d];
mag2 = [-a/2, -sqrt(3)*a, -d];
mag3 = [ 0, sqrt(3)*a, -d];
%%Position of mass
pmp = [-10, -15, 0];
%%Velocity of mass
pmv = [ 0, 0, 0];
%%Acceleration of mass
pma = [ 0, 0, 0];
%%Matrix of trajectories
PMPos = zeros(3,1);
PMPos(:,1) = pmp;
%%ODE Solving
syms x(t) y(t)
ode1 = diff(x,t,2) + R*diff(x,t,1) - ( (mag1(1)-x)/(sqrt((mag1(1)-x)^2+(mag1(2)-y)^2+(mag1(3))^2)^3) + ...
(mag2(1)-x)/(sqrt((mag2(1)-x)^2+(mag2(2)-y)^2+(mag2(3))^2)^3) + ...
(mag3(1)-x)/(sqrt((mag3(1)-x)^2+(mag3(2)-y)^2+(mag3(3))^2)^3) ) +C*x == 0;
ode2 = diff(y,t,2) + R*diff(y,t,1) - ( (mag1(2)-y)/(sqrt((mag1(1)-x)^2+(mag1(2)-y)^2+(mag1(3))^2)^3) + ...
(mag2(2)-y)/(sqrt((mag2(1)-x)^2+(mag2(2)-y)^2+(mag2(3))^2)^3) + ...
(mag3(2)-y)/(sqrt((mag3(1)-x)^2+(mag3(2)-y)^2+(mag3(3))^2)^3) ) +C*y == 0;
odes = [ode1; ode2];
V = odeToVectorField(ode1);
M = matlabFunction(V,'vars', {'t','Y'});
Interval = [0 20];
Conditions = [0 0];
Solution = ode45(M,Interval,Conditions);

Melden Sie sich an, um zu kommentieren.

Antworten (2)

Torsten
Torsten am 29 Nov. 2017
M=@(t,y)[y(2);-R*y(2)+((mag1(1)-y(1))/(sqrt((mag1(1)-y(1))^2+(mag1(2)-y(3))^2+(mag1(3))^2)^3)+(mag2(1)-y(1))/(sqrt((mag2(1)-y(1))^2+(mag2(2)-y(3))^2+(mag2(3))^2)^3)+(mag3(1)-y(1))/(sqrt((mag3(1)-y(1))^2+(mag3(2)-y(3))^2+(mag3(3))^2)^3) )-C*y(1);y(4);-R*y(4)+((mag1(2)-y(3))/(sqrt((mag1(1)-y(1))^2+(mag1(2)-y(3))^2+(mag1(3))^2)^3) +(mag2(2)-y(3))/(sqrt((mag2(1)-y(1))^2+(mag2(2)-y(3))^2+(mag2(3))^2)^3) +(mag3(2)-y(3))/(sqrt((mag3(1)-y(1))^2+(mag3(2)-y(3))^2+(mag3(3))^2)^3) ) -C*y(3)];
Interval=[0 20];
Conditions = [x; dx/dt; y ; dy/dt] at t=0 ??
Solution = ode45(M,Interval,Conditions);
Best wishes
Torsten.
  6 Kommentare
Erik Kostic
Erik Kostic am 29 Nov. 2017
Hey Torsten, thank you very much you are a germ :D
Steven Lord
Steven Lord am 29 Nov. 2017
Consider specifying the 'OutputFcn' option in your ode45 call as part of the options structure created by the odeset function. There are a couple of output functions included with MATLAB (the description of the OutputFcn option on that documentation page lists them) and I suspect one of odeplot, odephas2, or odephas3 will be of use to you.

Melden Sie sich an, um zu kommentieren.


Dariusz Skibicki
Dariusz Skibicki am 16 Mär. 2023
Replace
V = odeToVectorField(ode1);
with
V = odeToVectorField(odes);

Kategorien

Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange

Tags

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by