fsolve stopped because the problem appears regular
19 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Bodhisatwa Goswami
am 28 Okt. 2017
Kommentiert: XIN
am 24 Sep. 2022
Hi,
I am trying to solve a simple problem but somehow stuck with the output:
fsolve stopped because the problem appears regular as measured by the gradient, but the vector of function values is not near zero as measured by the default value of the function tolerance.
Would appreciate some help!
function F = root2d(x)
F(1) = (39*x(1)^2*x(2)^2)/100 - (x(2)^2)/5 - 2*x(1)^2 + 1;
F(2) = (39*x(1)^2*x(2)^2)/100 - (7*x(2)^2)/25 - (14*x(1)^2)/5 + 49/25
And my script says
fun = @root2d;
x0 = [0,0];
x = fsolve(fun,x0)
Thanks a lot in advance!
1 Kommentar
XIN
am 24 Sep. 2022
No solution found.
fsolve stopped because the problem appears regular as measured by the gradient,
but the vector of function values is not near zero as measured by the
value of the function tolerance.
<stopping criteria details
Question: Why am I having this problem with kmv in matlab? My percentage data are turned into numerical values, but after calculating, my asset value and Equity's value are exactly the same, and the asset value volatility is all 1. I find it so strange.
1、kmvbatch.m
m=xlsread('data1.xlsx',1,'A1:F36')
for i=1:36
r=m(i,4);%
EquityTheta = m(i,1);
E = m(i,2);
D = m(i,3);
T=1;
[Va,AssetTheta] = KMVOptSearch(E,D,r,T,EquityTheta)
m(i,5)=Va;
m(i,6)=AssetTheta;
end
m %
xlswrite('2.csv',m)
2、kmvfun.m
function F=KMVfun(EtoD,r,T,EquityTheta,x)
d1=(log(x(1)*EtoD)+(r+0.5*x(2)^2)*T)/(x(2)*sqrt(T));
d2=d1-x(2)*sqrt(T);
F=[x(1)*normcdf(d1)-exp(-r*T)*normcdf(d2)/EtoD-1;
normcdf(d1)*x(1)*x(2)-EquityTheta];
end
3、kmvoptsearch
function [Va,AssetTheta]=KMVOptSearch(E,D,r,T,EquityTheta)
EtoD=E/D;
x0=[1,1];
VaThetaX=fsolve(@(x)KMVfun(EtoD,r,T,EquityTheta,x),x0);
Va=VaThetaX(1)*E;
AssetTheta=VaThetaX(2);
end
Akzeptierte Antwort
John D'Errico
am 28 Okt. 2017
Bearbeitet: John D'Errico
am 28 Okt. 2017
It is NEVER a good idea to start any optimization at zero. That may easily screw up the gradient estimation, in case the code uses a relative increment on the variables. A random starting point, when you don't have a good idea of a guess, is always safer. Best of course is to use a start point that is close to the result.
No need to use an m-file function here. A function handle is sufficient.
F = @(x) [(39*x(1)^2*x(2)^2)/100 - (x(2)^2)/5 - 2*x(1)^2 + 1;(39*x(1)^2*x(2)^2)/100 - (7*x(2)^2)/25 - (14*x(1)^2)/5 + 49/25];
[x,fval] = fsolve(F,rand(1,2))
Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.
<stopping criteria details>
x =
0.795 2.3832
fval =
-8.908e-07
-1.0553e-06
Weitere Antworten (1)
Walter Roberson
am 28 Okt. 2017
Use any starting point whose components have absolute value 1E-7 or higher (approximately).
There are 8 solutions to those equations and your starting point [0 0] is in the middle of all of them; the algorithm cannot figure out which direction to head (the algorithm does not make random choices.) Using a non-zero starting point places one of the solutions closer and allows it to be found.
0 Kommentare
Siehe auch
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!