How to transpose a matrix
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Matrix A as follows:
A = [1 8
1 5
1 4
2 6
2 7
2 2
2 5
7 6
7 4
7 8
9 9
9 1
9 2
9 6
9 2
];
I want to transpose matrix A based on the unique ID in the first column. Add 0 at the end wherever its needed in order to keep matrix dimension consistent.
out = [1 8 5 4 0 0
2 6 7 2 5 0
7 6 4 8 0 0
9 9 1 2 6 2
];
1 Kommentar
Jan
am 27 Jun. 2017
The procedure is not explained uniquely. Surely this is not a transposing. With some guessing a method can be invented, but it would be safer, if you explain it clearly.
Antworten (2)
JESUS DAVID ARIZA ROYETH
am 27 Jun. 2017
you can use this:
A = [1 8
1 5
1 4
2 6
2 7
2 2
2 5
7 6
7 4
7 8
9 9
9 1
9 2
9 6
9 2
];
s=unique(A(:,1));
[~,v]=mode(A(:,1));
out=zeros(length(s),v+1);
for k=1:length(s)
value=[s(k) A(A(:,1)==s(k),2)'];
out(k,:)=[value zeros(1,v+1-length(value))];
end
0 Kommentare
Jan
am 27 Jun. 2017
Bearbeitet: Jan
am 27 Jun. 2017
With some guessing:
A = [1 8; ...
1 5; ...
1 4; ...
2 6; ...
2 7; ...
2 2; ...
2 5; ...
7 6; ...
7 4; ...
7 8; ...
9 9; ...
9 1; ...
9 2; ...
9 6; ...
9 2];
[Key, iKey, iA] = unique(A(:, 1));
R = zeros(numel(Key), 1 + mode(iA)); % Pre-allocate
for k = 1:numel(Key)
index = (iA == k);
R(k, 1:sum(index) + 1) = [Key(k), A(index, 2).'];
end
[B, N, Index] = RunLength(A(:, 1));
R = zeros(numel(B), 1 + max(N)); % Pre-allocate
for k = 1:numel(Key)
R(k, 1) = B(k);
R(k, 2:N(k) + 1) = A(Index(k):Index(k)+N(k)-1, 2).';
end
0 Kommentare
Siehe auch
Kategorien
Mehr zu Matrices and Arrays finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!