TO SOLVE AN INTEGRAL WHERE A FUNCTION CONTAINS A COMPLEX SUM

3 Ansichten (letzte 30 Tage)
RB
RB am 14 Mai 2017
Kommentiert: RB am 16 Mai 2017
Hello! I am stuck up with a problem where my function contains a sum of certain quantities indeed matrices and scalars that are computed in a loop. The matrices are 2 by 2.
delta=0.75;
for i=2:n
APHNEW=expm([(i-1).*H,(i-1).*(2*(Q'*Q));(i-1).*(R+M),(i-1).*(-(H'))]);
APHNEW11=APHNEW(1:2,1:2); %That is good
APHNEW21=APHNEW(3:4,1:2);
APHNEW12=APHNEW(1:2,3:4);
APHNEW22=APHNEW(3:4,3:4);
BPHNEW22=inv(APHNEW22);
PSIi=BPHNEW22*APHNEW21;
SPSI1=SPSI1+PSIi;
PHIi=beta*(log(det(APHNEW22))+(i-1)*trace(H'))/2;
S0i(i)=exp(-((rbar+mubar)*(i-1)+PHIi));
S0i2(i)=(-((rbar+mubar)*(i-1)+PHIi));
Yn0=Yn0+S0i2(i);
fun0=@(Gamma) exp(trace(1i*(THETA1*inv(eye(2)-2i*SIGMA*Gamma)*SIGMA*Gamma)))/((det(eye(2)-2i*SIGMA*Gamma))^(beta/2));
%In the next line Gamma1 is a scalar and is indeed the parameter
%of the Fourier Transform
%the next two lines are separate functions
fun1 = @(Gamma1) exp((1i*Gamma1+delta)*Yn0)*S0i(i)*fun0(1i*PSIi-(Gamma1-1i*delta)*SPSI);
fun3 = @(Gamma1) exp((1i*Gamma1+delta)*Yn0)*(S0i(i)*fun0(1i*PSIi-(Gamma1-1i*delta)*SPSI)-K*fun0(-(Gamma1-1i*delta)*SPSI));
end
I need to compute fun1 on sum of
S0i(i)*fun0(1i*PSIi-(Gamma1-1i*delta)*SPSI);
and then use this in fun3 which I am writing without sum.
I then use it to define a new function which I have to integrate using quadgk between 0 to infinity. However I am not being able to sum the arguments since Gamma1 is unknown and used in quadgk.
Any help would be great.
Thanks
Warm regards,
  5 Kommentare
RB
RB am 14 Mai 2017
Actually I am still stuck up the fact that the function involves a sum of arguments is creating a problem. I canot run a loop to sum the arguments of the function.
P.S. The other 'i' appearing in exponent and in functions is iota.
Any help would be appreciated.
Thanks.
RB
RB am 16 Mai 2017
It is still not working out. The function does not sum arguments.

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Gamma Functions finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by