Heat Transfer: Matlab 2D Conduction Question
28 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
1. The problem statement, all variables and given/known data
Having trouble with code as seen by the gaps left where it asks me to add things like the coefficient matrices. Any Numerical Conduction matlab wizzes out there?
A long square bar with cross-sectional dimensions of 30 mm x 30 mm has a specied temperature on each side, The temperatures are:
Tbottom = 100 C
Ttop = 150 C
Tleft = 250 C
Tright = 300 C
Assuming isothermal surfaces, write a software program to solve the heat equation to determine the two-dimensional steady-state spatial temperature distribution within the bar. Your analysis should use a finite difference discretization of the heat equation in the bar to establish a system of equations:
2. Relevant equations
AT = C
Must use Gauss-Seidel Method to solve the system of equations
3. The attempt at a solution
clear all
close all
%Specify grid size
Nx = 10;
Ny = 10;
%Specify boundary conditions
Tbottom = 100
Ttop = 150
Tleft = 250
Tright = 300
% initialize coefficient matrix and constant vector with zeros
A = zeros(Nx*Ny);
C = zeros(Nx*Ny,1);
% initial 'guess' for temperature distribution
T(1:Nx*Ny,1) = 100;
% Build coefficient matrix and constant vector
% inner nodes
for n = 2:(Ny-1)
for m = 2:(Nx-1)
i = (n-1)*Nx + m;
A(i,i+Nx) = 1;
A(i,i-Nx) = 1;
A(i,i+1) = 1;
A(i,i-1) = 1;
A(i,i) = -4;
end
end
% Edge nodes
% bottom
for m = 2:(Nx-1)
%n = 1
i = m;
A(i,i+Nx) = 1;
A(i,i+1) = 1;
A(i,i-1) = 1;
A(i,i) = -4;
C(i) = -Tbottom;
end
%top:
for m = 2:(Nx-1)
% n = Ny
i = (Ny-1)*Nx + m;
A(i,i-Nx) = 1;
A(i,i+1) = .5;
A(i,i-1) = .5;
A(i,i) = -5;
C(i) = -Ttop;
end
%left:
for n=2:(Ny-1)
%m = 1
i = (n-1)*Nx + 1;
A(i,i+Nx) = .5;
A(i,i+1) = 1;
A(i,i-Nx) = .5;
A(i,i) = -2;
end
%right:
for n=2:(Ny-1)
%m = Nx
i = (n-1)*Nx + Nx;
A(i,i+Nx) = 1;
A(i,i-1) = 1;
A(i,i-Nx) = 1;
A(i,i) = -4;
C(i) = -Tright;
DEFINE COEFFICIENT MATRIX AND CONSTANT VECTOR ELEMENTS HERE
end
% Corners
%bottom left (i=1):
i=1
A(i,Nx+i) = 1;
A(i,2) = 1;
A(i,1) = -4;
C(i) = -(Tbottom + Tleft);
%bottom right:
i = Nx
A(i,Nx+i) = 1;
A(i,2) = 1;
A(i,1) = -4;
C(Nx) = -(Tbottom + Tright);
%top left:
i = (Ny-1)*Nx + 1;
A(i,i+1) = .5
A(i,i) =
%top right:
i = Nx*Ny;
DEFINE COEFFICIENT MATRIX AND CONSTANT VECTOR ELEMENTS HERE
%Solve using Gauss-Seidel
residual = 100;
iterations = 0;
while (residual > 0.0001) % The residual criterion is 0.0001 in this example
7% You can test different values
iterations = iterations+1
%Transfer the previously computed temperatures to an array Told
Told = T;
%Update estimate of the temperature distribution
INSERT GAUSS-SEIDEL ITERATION HERE
%compute residual
deltaT = abs(T - Told);
residual = max(deltaT);
end
iterations % report the number of iterations that were executed
%Now transform T into 2-D network so it can be plotted.
delta_x = 0.03/(Nx+1)
delta_y = 0.03/(Ny+1)
for n=1:Ny
for m=1:Nx
i = (n-1)*Nx + m;
T2d(m,n) = T(i);
x(m) = m*delta_x;
y(n) = n*delta_y;
end
end
T2d
surf(x,y,T2d)
figure
contour(x,y,T2d)
10 Kommentare
Jonathan Ayala
am 14 Nov. 2019
Hello, any luck with modifying the code with values for K and h? I am working on a similar problem, Thanks.
ARJUN MODIA
am 23 Jun. 2020
If we work on steady-state problem then the values of h & k will not affect your results. @ Jonathan and @ Bimal.
Antworten (3)
Ahmed Hakim
am 17 Nov. 2012
Very nice Code
I would like to use SOR method for finding the optimum omega...can u help me?
thanks
0 Kommentare
ashwath suresh
am 16 Feb. 2015
Hi could you please explain how codes for inner nodes and edge nodes are given? why is the value for A(i,i)=-4
0 Kommentare
Siehe auch
Kategorien
Mehr zu Function Creation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!