How can I create a modified curve fitting function?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
i want to fit a recovery curve of my experiment to the following expression:
F(t)=k*exp(-D/2t)[I0(D/2t)+I1(D/2t)]
where I0 and I1 are the modified Bessel fundtions of the first kind of zero and first order. I want to determine D and k.
Is there any simple solution for this problem?
Thanks for helping
5 Kommentare
Antworten (2)
John D'Errico
am 19 Mär. 2017
Bearbeitet: John D'Errico
am 19 Mär. 2017
Yes. Of course it is possible to do this. What toolbox do you have available? It sounds like the curve fitting TB is what you have. READ THE HELP. Look at the examples provided.
You said modified first kind Bessel, so you would use besseli. I'll get you started:
I0 = @(z) besseli(0,z);
I1 = @(z) besseli(1,z);
F = @(P,t) P(1)*exp(-P(2)/2*t).*(I0(P(2)/2*t)+I1(P(2)/2*t));
The curve fitting toolbox should be able to use this, as well as nlinfit and lsqcurvefit.
Note that I made the assumption that D/2t should be interpreted as (D/2)*t, NOT as D/(2*t).
3 Kommentare
Sung YunSing
am 18 Aug. 2021
Hi just want to mention that if you were working at FRAP, maybe D/(2*t) is more conform to the origin FRAP equation.
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!