How to solve 2nd order ODE inequality ?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello to all,
I am trying to numerically solve a 2nd order ODE inequality of the form : y"(x) + y'(x)*a(x) + y(x)*b(x) <= 0 ( a(x) and b(x) are spatially varying parameters). Also, my solution y(x) must be > 0 for all x.
It is possible to solve a similar problem in Matlab ( y"(x) + y'(x)*a(x) + y(x)*b(x) = 0 ) using ode solvers, however, I am uncapable of enforcing the above constraints (ODE<=0 and y(x)>0).
Are toolboxes like Yalmip useful in solving such problems?
Thanks in advance
Firas
3 Kommentare
Antworten (1)
Tamir Suliman
am 29 Nov. 2016
Bearbeitet: Tamir Suliman
am 29 Nov. 2016
lets assume that we have the equations:
y''+a*y'+b*y<=0 a , b are f(x) where x>0
let y(x)=Y1 and dy(x)/dx = Y2
dY1/dx= Y2 dY2/dx= -a*Y2-b*Y1
lets assume a =3 b =4 then the program code would be similar to
a=3;b=4;
syms y(x)
[V] = odeToVectorField(diff(y, 2) == -a*diff(y) -b* y);
M = matlabFunction(V,'vars', {'x','Y'})
sol = ode45(M,[0 20],[2 0]);
fplot(@(x)deval(sol,x,1), [0, 20])
if statement would be sufficient to add the constraints
2 Kommentare
Tamir Suliman
am 2 Dez. 2016
Bearbeitet: Tamir Suliman
am 2 Dez. 2016
if sol > 0 then code please do some thing for me here
else if sol < 0 then code please do some thing for me else code
end
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!