Adding uneven matrices
14 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hey guys,
is there a method(aka function) by which I can add two matrices that aren't the same size and make it so that the matrices become of equivalent size by being filled with zeros in the remaining space?
Thanks
[Merged information from Answer]
It would be like ..
a=ones(150,91)*2
b=ones(141,100)*3
a+b
So, is there a way to make the matrices even but filling them with zeros? (adding 0 more rows to b, and 9 more columns to a of value=0) ...
Thanks!
2 Kommentare
Walter Roberson
am 6 Mär. 2012
There are over 100,000 different possible results for that calculation. You need to be very specific about which elements are to be added to which elements.
Antworten (2)
Jan
am 6 Mär. 2012
a = ones(150,91)*2
b = ones(141,100)*3
c = AddFill(a, b);
function c = AddFill(a, b);
sa = size(a);
sb = size(b);
c = zeros(max(sa, sb)); % Pre-allocate
c(1:sa(1), 1:sa(2)) = a; % Assign a
c(1:sb(1), 1:sb(2)) = c(1:sb(1), 1:sb(2)) + b; % Add b
2 Kommentare
Ismail Qeshta
am 14 Feb. 2018
Hi Jan. Can you please let me know how to modify your code for three unequal matrices instead of two? Thank you.
Walter Roberson
am 14 Feb. 2018
function d = AddFill(a, b, c);
sa = size(a);
sb = size(b);
sc = size(c);
d = zeros(max([sa; sb; sc])); % Pre-allocate
d(1:sa(1), 1:sa(2)) = a; % Assign a
d(1:sb(1), 1:sb(2)) = d(1:sb(1), 1:sb(2)) + b; % Add b
d(1:sc(1), 1:sc(2)) = d(1:sc(1), 1:sc(2)) + c; % Add c
Andrei Bobrov
am 6 Mär. 2012
variant (one of 100000) :)
function out = addiffmatrix(varargin)
n = cellfun('ndims',varargin);
N = max(n);
sz = cell2mat(cellfun(@(x)[size(x) ones(1,N - numel(size(x)))],varargin(:),'un',0));
mm = arrayfun(@(i1)1:i1,sz,'un',0);
m1 = zeros(max(sz));
out = m1;
M = m1;
for j1 = 1:numel(varargin)
M(mm{j1,:}) = varargin{j1};
out = out + M;
M = m1;
end
using
a = ones(3,4)
b = 2*ones(5,3)
out = addiffmatrix(a,b)
out =
3 3 3 1
3 3 3 1
3 3 3 1
2 2 2 0
2 2 2 0
ADD
variant with "general point"
function out = addiffmatrix(cp,varargin)
% cp - coordinates of the general point in every matrix
% varargin - matrices
n = cellfun('ndims',varargin);
N = max(n);
sz = cell2mat(cellfun(@(x)[size(x) ones(1,N - numel(size(x)))],...
varargin(:),'un',0));
C = max(cp);
ij1 = bsxfun(@minus,C,cp);
mm = arrayfun(@(i1,j1)(1:i1)+j1,sz,ij1,'un',0);
out = zeros(C+max(sz-cp));
for j1 = 1:numel(varargin)
out(mm{j1,:}) = out(mm{j1,:}) + varargin{j1};
end
using
>> a
a =
1 1 1 1
1 1 1 1
>> b
b =
1.5 1.5 1.5
1.5 1.5 1.5
1.5 1.5 1.5
>> c
c =
2 2
2 2
2 2
2 2
2 2
>> cp
cp =
1 1
1 3
5 2
>> out = addiffmatrix(cp,a,b,c)
out =
0 2 2 0 0 0
0 2 2 0 0 0
0 2 2 0 0 0
0 2 2 0 0 0
1.5 3.5 4.5 1 1 1
1.5 1.5 2.5 1 1 1
1.5 1.5 1.5 0 0 0
>>
0 Kommentare
Siehe auch
Kategorien
Mehr zu Triangulation Representation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!