identify a matrix within a matrix
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
byron goodship
am 22 Sep. 2016
Bearbeitet: Arne T
am 16 Dez. 2020
I'm pretty new to this. What I am wondering is how to test a few different matrices within a larger one.
this would be an example of what I want to do:
A = 9 7 6 5 4 A = [9 7 6 5 4;6 7 5 4 2;7 7 5 5 5;7 6 4 4 3]
6 7 5 4 2
7 7 5 5 5
7 6 4 4 3
B = 7 7 B = [7 7;7]
7
C = 7 C = [7;7;7]
7
7
D = 5 5 5 D = [5 5 5]
and then show me where in the original one they are, replacing the non-matches with 0's.
Cheers.
Any direction as to what functions I need to look into would be greatly appreciated
0 Kommentare
Akzeptierte Antwort
Andrei Bobrov
am 22 Sep. 2016
Bearbeitet: Andrei Bobrov
am 22 Sep. 2016
Bad variant
A = [9 7 6 5 4;6 7 5 4 2;7 7 5 5 5;7 6 4 4 3]
B = [7 7;7 0];
p = abs(filter2(B,A) - norm(B(:))^2) < eps(1e4);
out1 = imdilate(p,B>0).*A;
C = [7;7;7];
p2 = abs(filter2(C,A) - norm(C(:))^2) < eps(1e4);
out2 = imdilate(p2,C>0).*A;
D = [5 5 5];
p3 = abs(filter2(D,A) - norm(D(:))^2) < eps(1e4);
out2 = imdilate(p3,D>0).*A;
other variant:
use m-file findarray.m:
function [idx,arrfnd] = findarray(A,B)
[m,n] = size(A);
Ai = reshape(1:n*m,[m,n]);
[mb,nb] = size(B);
B = B(:);
t = ~isnan(B);
pb = bsxfun(@plus,(0:mb-1)',(0:nb-1)*m);
pb = pb(t);
Av = reshape(Ai(1:m-mb+1,1:n-nb+1),1,[]);
i0 = bsxfun(@plus,Av,pb(:));
ii = all(bsxfun(@eq,A(i0),B(t)));
idx = i0(:,ii);
arrfnd = zeros(m,n);
arrfnd(idx) = A(idx);
end
example of use
>> A
A =
9 7 6 5 4
6 7 5 4 2
7 7 5 5 5
7 6 4 4 3
>> B1
B1 =
7 7
7 NaN
>> [idx,arrfnd] = findarray(A,B1)
idx =
3
4
7
arrfnd =
0 0 0 0 0
0 0 0 0 0
7 7 0 0 0
7 0 0 0 0
>> C
C =
7
7
7
>> [idx,arrfnd] = findarray(A,C)
idx =
5
6
7
arrfnd =
0 7 0 0 0
0 7 0 0 0
0 7 0 0 0
0 0 0 0 0
>> D
D =
5 5 5
>> [idx,arrfnd] = findarray(A,D)
idx =
11
15
19
arrfnd =
0 0 0 0 0
0 0 0 0 0
0 0 5 5 5
0 0 0 0 0
>>|
8 Kommentare
Arne T
am 15 Dez. 2020
Hi Andrei!
Your code works perfectly, but I want to use it in a 3D Matrix. Unfortunately your Code only works in 2D cause bsxfun respectivly the plus operator only works in 2D with this result. Do you know a way to expand this function that it would work in 3D.
Cause Im writing a recursiv function with up to 300Mio iteratons the runtime is very important.
Thanks!
Arne T
am 16 Dez. 2020
Bearbeitet: Arne T
am 16 Dez. 2020
I solved the problem with the following code. This works in 3D Matrix.
[m,n,o] = size(A);
Ai = reshape(1:n*m*o,[m,n,o]);
[mb,nb,ob] = size(B);
B = B(:);
t = ~isnan(B);
pb = (0:mb-1)'+(0:nb-1)*m+reshape([0:ob-1],1,1,ob)*n*m;
pb = pb(t);
Av = reshape(Ai(1:m-mb+1,1:n-nb+1,1:o-ob+1),1,[]);
i0 = Av+pb(:);
ii = all(bsxfun(@eq,A(i0),B(t)));
idx = i0(:,ii);
Siehe auch
Kategorien
Mehr zu Logical finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!