Fast sparse matrix-vector multiplication?
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I need to perform large sparse matrix-vector multiplications (matrix size up to 100mX100m). The matrix need of course to be sparse (otherwise I would have problems with the memory), and I noticed that the operator * does NOT support multithreading with sparse matrices. Hence, when I run my program on a cluster I do not get significant speedups. Can you help me? Thanks a lot!
0 Kommentare
Antworten (1)
John D'Errico
am 19 Sep. 2016
Bearbeitet: John D'Errico
am 19 Sep. 2016
As usual, people want huge operations to run in milliseconds, as if their computer was infinitely large and infinitely fast. No matter how fast you get it running, tomorrow or next week you will want to solve problems 10 times as big in the same amount of time.
Sorry, but get a faster computer. What else can be realistically said here?
5 Kommentare
John D'Errico
am 19 Sep. 2016
Sparse matrix multiplies run in only one core in MATLAB, at least at the current time. That may change in the future, but I did recently verify that MATLAB uses one core only here.
Bjorn Gustavsson
am 19 Sep. 2016
Bearbeitet: Bjorn Gustavsson
am 19 Sep. 2016
What I had in mind was to instead of doing:
V = randn(9,1);
M = randn(9,9);
MV = M*V;
it might be possible to manually partition the calculations similar to:
M1 = M(:,1:3);
M2 = M(:,(1:3)+3);
M3 = M(:,(1:3)+6);
MV123 = M1*V(1:3) + M2*V(4:6) + M3*V(7:9);
If it is beneficial to do this "manual" parallelization or not depends on whether the increase of data-transfer and so on, but it is trivially possible to parallelize also sparse multiplications.
Siehe auch
Kategorien
Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!