Compute the product of the next n elements in matrix
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I would like to compute the product of the next n adjacent elements of a matrix. The number n of elements to be multiplied should be given in function's input. For example for this input I should compute the product of the 3 consecutive elements, starting from 1.
[product, ind] = max_product([1 2 2 1 3 1],3);
This gives (4,4,6,3).
Is there any practical way to do it? Now I do this using
for ii=1:(length(v)-2)
p=prod(v(ii:ii+n-1));
where v is the input vector and n is the number of elements to be multiplied.
Depending whether n is odd or even or length(v) is odd or even, I get sometimes right answer but sometimes the following error
Index exceeds matrix dimensions.
Error in max_product (line 6)
p=prod(v(ii:ii+n-1));.
Is there any correct general way to do it?
6 Kommentare
Srishti Saha
am 11 Mär. 2018
have posted an answer to the question that I used to complete my homework
Antworten (6)
Walter Roberson
am 4 Sep. 2016
hint: cumprod divided by cumprod
4 Kommentare
Walter Roberson
am 4 Sep. 2016
Consider, for example, X * (X-1) * (X-2) * ... (X-N) for X a positive integer. That can be written as X! / (X-N-1)! which is prod(1:X) / prod(1:X-N-1) . Now if you wanted to vectorize this, to do a "sliding window", you could use cumprod() on the top and bottom, with appropriate sub-array extraction to get the right lengths.
You are not doing factorial, but what happens if you use a vector of values instead of 1:X ?
John D'Errico
am 4 Sep. 2016
Bearbeitet: John D'Errico
am 4 Sep. 2016
Of course, if the vector is long with elements that are larger than 1, expect this to overflow and turn the result into inf, then when you divide, you have inf/inf, so nans will result.
Or, if the elements are less than 1, then you will get underflows, which become zero. Then 0/0 is also NaN.
As well, even for some cases where overflow does not result, you may experience some loss of precision in the least significant bits, if the intermediate products exceed 2^53-1.
But for short vectors with reasonable numbers in them, this will work.
Matt J
am 4 Sep. 2016
Bearbeitet: Matt J
am 4 Sep. 2016
function prodout = max_product(A,n)
prodout = exp( conv(log(A),ones(1,n),'valid') );
if isreal(A), prodout=real(prodout); end
end
Just to be clear, this will handle input with zeros and negatives, e.g.,
>> prodout=max_product([0 2 2 1 3 -1], 3)
prodout =
0 4.0000 6.0000 -3.0000
2 Kommentare
John D'Errico
am 4 Sep. 2016
Drat. :) I was going to answer this with the log and conv solution. That is of course, the correct solution (and the one I was going to offer) as long as...
1. The elements are strictly positive. zero or negative values will cause problems with those logs.
2. You don't need an exact product of integers, since logs and exponents will yield subtle errors in the least significant bits.
+1 anyway, since this was going to be my solution.
Andrei Bobrov
am 4 Sep. 2016
Bearbeitet: Andrei Bobrov
am 4 Sep. 2016
[prodout, ind] = max_product(A,n)
ii = 1:numel(A);
ind = hankel(ii(1:n),ii(n:end));
prodout = prod(A(ind));
end
or just
max_product = @(A,n)prod(hankel(A(1:n),A(n:end)));
0 Kommentare
Srishti Saha
am 11 Mär. 2018
This should work. has been tested and refined:
function B = maxproduct(A,n)
% After checking that we do not have to return an empty array, we initialize a row vector % for remembering a product, home row and column, and one of four direction codes.
[r,c] = size(A);
if n>r && n>c
B = []; % cannot be solved
return
end
L = [-Inf,0,0,0]; % [product, home-row, home-col, direction]
for i=1:r
for j=1:c-n+1
L = check(A(i,j:j+n-1),[i,j,1],L); % row, right case
end
end
for i=1:r-n+1
for j=1:c
L = check(A(i:i+n-1,j),[i,j,2],L); % column, down case
end
end
for i=1:r-n+1
for j=1:c-n+1
S=A(i:i+n-1,j:j+n-1);
L = check(diag(S),[i,j,3],L); % diagonal, down case
L = check(diag(flip(S,2)),[i,j,4],L); % reverse diagonal, down case
end
end
i=L(2); j=L(3); % reconstruct coordinates
switch L(4)
case 1, B = [ones(n,1)*i,(j:j+n-1)'];
case 2, B = [(i:i+n-1)',ones(n,1)*j];
case 3, B = [(i:i+n-1)',(j:j+n-1)'];
case 4, B = [(i:i+n-1)',(j+n-1:-1:j)'];
end
end
function L = check(V,d,L)
p = prod(V);
if p>L(1) % if new product larger than any previous
L = [p,d]; % then update product, home and direction
end
end
0 Kommentare
michio
am 4 Sep. 2016
In the spirit of avoiding for-loops...
x = 1:10; n = 3 % Example
N = length(x);
index = zeros(N-n+1,n);
index(:,1) = 1:N-n+1';
index(:,2) = index(:,1) + 1;
index(:,3) = index(:,1) + 2;
prod(x(index),2)
2 Kommentare
Walter Roberson
am 4 Sep. 2016
You created index as extending to n columns but only fill 3 of the columns. You would need to fill the rest of the columns and that is probably going to need a for loop.
michio
am 4 Sep. 2016
Oops. You are exactly correct. The above script works as intended only when n = 3.
Siehe auch
Kategorien
Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!