Most efficient way to sum anti-diagonal elements
19 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Jon Paul Janet
am 10 Jul. 2016
Kommentiert: Hongbo Zhao
am 10 Okt. 2018
Inside an ODE that I am solving (ode15s), I need to do the following. Let the state vector by y (Nx1), and for some fixed, sparse symmetric A (NxN), I need to have that
y' = [sum of anti-diagonal elements of (diag(y)*A*diag(y))] + f(t)
for some forcing f. The problem is, for large N (10k + ) this is pretty slow as the solver takes many steps. Currently I have calculated a logical index mask (outside the ode) that gives me the elements I want, and my code (inside the d.e.) is:
A = spdiags(y,0,N,N)*A*spdiags(y,0,N,N); %overwrite A in-place with y*A*y
working_matrix=sparse([],[],[],2*N-1,N,N*ceil(N/2)); % sparse allocation
working_matrix(index_map)=A; %strip antidiagonals to columns
this gives me working_matrix, which has the antidiagonal elements of (diag(y)*A*diag(y) which I can just sum over. However, 99% of my runtime is spent on the line "working_matrix(index_map)=A". Any speedup on this line would save me a lot of time. "index_map" is a (2*N-1)xN logical array that pulls out the correct elements, based on this work here.
Is there a better way? I can pull of the antidiagonal elements of A outside the solver and pass the matrix that has the antidiagonal elements as rows, but then I still need the same construction applied to y*y' to get the matching elements of y - unless there is a better way to do this?
I am running R2015b if that matters.
0 Kommentare
Akzeptierte Antwort
Andrei Bobrov
am 12 Jul. 2016
"all of the elements on any NE-SW diagonal"
a = randi(50,6);
[m,n] = size(a);
idx = hankel(1:m,m:(n-1)+m);
out = accumarray(idx(:),a(:));
4 Kommentare
Weitere Antworten (3)
Walter Roberson
am 11 Jul. 2016
[r, c] = size(A);
sum(A(r : r-1 : end))
2 Kommentare
Stephen23
am 12 Jul. 2016
Bearbeitet: Stephen23
am 12 Jul. 2016
+1 for a very neat solution. Note the indices must end with end-1:
>> X = [1,2,3;4,5,6;7,8,9]
X =
1 2 3
4 5 6
7 8 9
>> [r,c] = size(X);
>> X(r:r-1:end-1)
ans =
7 5 3
>> X(r:r-1:end)
ans =
7 5 3 9
The code should be:
>> sum(X(r:r-1:end-1))
ans = 15
Also note that this will only work for square matrices (and a few other cases) but not for any general rectangular matrix.
Walter Roberson
am 12 Jul. 2016
For non-square matrices,
sum( X(r:r-1:r*(r-1)+1) )
Siehe auch
Kategorien
Mehr zu Operating on Diagonal Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!