k-means clustering algorithm

11 Ansichten (letzte 30 Tage)
zhala sarkawt
zhala sarkawt am 22 Mai 2016
Kommentiert: Walter Roberson am 28 Dez. 2017
For the data set shown below, execute the k-means clustering algorithm with k=2 till convergence. You should declare convergence when the cluster assignments for the examples no longer change. As initial values, set µ1 and µ2 equal to x(1) and x(3) respectively. Show your calculations for every iteration. x1 x2 1 1 1,5 2 2 1 2 0,5 4 3 5 4 6 3 6 4
1. You should start your calculation first by initializing your µ1 and µ2 as shown below. µ1 = x(1) =(1,1) µ2 = x(3) =(2,1) 2. For every iteration till convergence find c(i) for i = {1,2,3,4,5,6,7,8} then compute the average for each cluster and reassign the µ1 and µ2 3. Repeat 2 till convergence
  5 Kommentare
Image Analyst
Image Analyst am 23 Mai 2016
Thanks for the correction - apparently I overlooked it.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Image Analyst
Image Analyst am 23 Mai 2016
Hint:
x1x2 = [...
1 1
1.5 2
2 1
2 0.5
4 3
5 4
6 3
6 4]
x1 = x1x2(:, 1);
x2 = x1x2(:, 2);
mu1 = [1,1];
mu2 = [2,1];
for k = 1 : 4
indexes = kmeans(x1x2, 2, 'start', [mu1;mu2])
mu1 = mean(x1x2(indexes == 1, :), 1)
mu2 = mean(x1x2(indexes == 2, :), 1)
end

Kategorien

Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by