Is SVM resilient to noise
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Diver
am 9 Mai 2016
Beantwortet: Image Analyst
am 9 Mai 2016
I have tranning set composed of 36 features. when I calculated "explained" value of PCA using Matlab. I notice that only the first 24 components are important.
My question is, would I gain a better accuracy (prediction) if I omit the reset of the components (the other 12 components). Or SVM is very resilient to noise which means that regardless whether I removed the other 12 components or not. performance will not change that much.
0 Kommentare
Akzeptierte Antwort
Image Analyst
am 9 Mai 2016
I would think it would matter where the noise was. If it's far away from the dividing line, then it doesn't make any difference. If it's close to the dividing line, then yeah, it makes a huge difference.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!