How to solve the optimization using Matlab's optimization toolbox
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Can somebody help to solve following optimization using Matlab's optimization toolbox
Max r == [ 1 + [(1-pab)/p(ab) ]* pint ] ^ 1/k
subject to 0 < pinit <= 1 ;k>0, and 0 < pab <= 1
8 Kommentare
Torsten
am 18 Jan. 2016
A minimum on [0:1]x[0:1] does not exist.
Hint:
See what happens for p arbitrary, q=eps a very small positive number.
Best wishes
Torsten.
John D'Errico
am 18 Jan. 2016
Read my answer. You CANNOT find a maximum of this function. It is unbounded.
The minimum is TRIVIAL to find. Again, use common sense!
Simply set pab == 1. r will take on the value of 1. It cannot be any lower. The other parameters are meaningless. Pick any random numbers.
USE COMMON SENSE and high school mathematics.
Antworten (1)
John D'Errico
am 18 Jan. 2016
Bearbeitet: John D'Errico
am 18 Jan. 2016
IF I assume that p(ab) and pab are the same, and that pinit and pint are the same thing, then...
No, fmincon will be of no real value. Common sense is sufficient.
With pint and pab both positive and no larger than 1, the expression
[(1-pab)/p(ab) ]* pint
is ALWAYS a non-negative number, only ever exactly zero based on your constraints when pab is exactly 1.
Therefore, the expression
[ 1 + [(1-pab)/p(ab) ]* pint ]
is ALWAYS at least 1, and generally larger than 1. Since you then raise it to a power (1/k) we therefore need to maximize 1/k. So make k as small as possible. Zero would be nice, but difficult to achieve, since you said k>0. So make k approach zero in a limit, and you can make r as large as you wish. r is unbounded. Choose any values for pab and pint, as long as pab is not exactly 1. As long as we can make k arbitrarily small, we can make r approach infinity as k approaches zero in the limit.
As I said, fmincon is totally unnecessary, and in fact ANY optimizer would be a complete waste of time. Just use common sense and basic mathematics.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Get Started with Optimization Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!