Does anyone know how to figure out a workaround to avoid computing overflow/underflow/NaN/inf in this algorithm?
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Eric Diaz
am 15 Nov. 2015
Kommentiert: Eric Diaz
am 22 Nov. 2015
M14 = Signal.^14;
M12 = Signal.^12 ; M10 = Signal.^10;
M8 = Signal.^8 ; M6 = Signal.^6;
M4 = Signal.^4 ; M2 = Signal.^2;
S14 = Sigma.^14;
S12 = Sigma.^12 ; S10 = Sigma.^10;
S8 = Sigma.^8 ; S6 = Sigma.^6;
S4 = Sigma.^4 ; S2 = Sigma.^2;
nPiD2 = pi/2;
sqrtNpiD2 = sqrt(nPiD2);
n1D2 = 1/2;
n1D4 = 1/4;
n1DM10Sig = 1./(M10.*Sigma);
n1DM12Sig = 1./(M12.*Sigma);
alpha = M2./S2;
nAlphaD4 = n1D4*alpha;
FirstTerm = n1DM10Sig.*(M12 + 9*M10.*S2 - 15*M8.*S4 + 90*M6.*S6 - 495*M4.*S8 + 2160*M2.*S10 - 5760*S12).*besseli(0,nAlphaD4);
SecondTerm = n1DM12Sig.*(M14 + 7*M12.*S2 - 27*M10.*S4 + 150*M8.*S6 - 855*M6.*S8 + 4320*M4.*S10 - 17280*M2.*S12 + 46080*S14).*besseli(1,nAlphaD4);
biasedSignal = n1D2*sqrtNpiD2*exp(-nAlphaD4).*(FirstTerm + SecondTerm);
As you can imagine, because of the powers of these numbers being rather high, I am running into issues with computing inf/NaN where I don't actually want it. Is there a way to avoid computing these values?
0 Kommentare
Akzeptierte Antwort
Jan
am 15 Nov. 2015
You can calculate the logarithm of all equations to keep the ranges of the values inside the limits. Replace besseli by its taylor series to build its log.
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Loops and Conditional Statements finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!