uncertainty and curve fitting
18 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
Please I need your help. I'm working on curve fitting, I'm using lsqcurvefit function to do it!! I'm trying to estimate uncertainty of the coefficient A and B of the function fitted to my observation ponits (y=A.x^B)!! Please could you help me!! Thank you in advance
Mira
0 Kommentare
Akzeptierte Antwort
Richard Willey
am 19 Dez. 2011
If you need confidence intervals nlinfit is a better option
0 Kommentare
Weitere Antworten (2)
bym
am 19 Dez. 2011
this example shows how to bootstrap to get the standard error in the coefficients. You can adapt it to use lsqcurvefit or transform your model to linear using logarithms
load hald
x = [ones(size(heat)),ingredients];
y = heat;
b = regress(y,x);
yfit = x*b;
resid = y - yfit;
se = std(bootstrp(...
1000,@(bootr)regress(yfit+bootr,x),resid));
1 Kommentar
Richard Willey
am 20 Dez. 2011
Bootstraps are great. I love them to death. However, I question whether they're an appropriate solution when parametric methods are available.
In general, I think of bootstraps as something we do out of necessity when a parametric estimate isn't feasible. For example, generating confidence bounds around the median, bootstrapping a LOESS curve or a kernel smoother.
Siehe auch
Kategorien
Mehr zu Interpolation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!