uncertainty and curve fitting
    4 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
Hi,
Please I need your help. I'm working on curve fitting, I'm using lsqcurvefit function to do it!! I'm trying to estimate uncertainty of the coefficient A and B of the function fitted to my observation ponits (y=A.x^B)!! Please could you help me!! Thank you in advance
Mira
0 Kommentare
Akzeptierte Antwort
  Richard Willey
    
      
 am 19 Dez. 2011
        If you need confidence intervals nlinfit is a better option
0 Kommentare
Weitere Antworten (2)
  bym
      
 am 19 Dez. 2011
        this example shows how to bootstrap to get the standard error in the coefficients. You can adapt it to use lsqcurvefit or transform your model to linear using logarithms
load hald
x = [ones(size(heat)),ingredients];
y = heat;
b = regress(y,x);
yfit = x*b;
resid = y - yfit;
se = std(bootstrp(...
         1000,@(bootr)regress(yfit+bootr,x),resid));
1 Kommentar
  Richard Willey
    
      
 am 20 Dez. 2011
				Bootstraps are great. I love them to death. However, I question whether they're an appropriate solution when parametric methods are available.
In general, I think of bootstraps as something we do out of necessity when a parametric estimate isn't feasible. For example, generating confidence bounds around the median, bootstrapping a LOESS curve or a kernel smoother.
Siehe auch
Kategorien
				Mehr zu Quadratic Programming and Cone Programming finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!