different answers for implementing summation
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Terry McGinnis
am 22 Jun. 2015
Bearbeitet: Terry McGinnis
am 22 Jun. 2015
im trying to implement summation in the following 2 ways:
1.
f1=[10 20 30 40 50]
x1=[1 2 3 4 5]
J=0
for i=1:5
J=J+((f1(i)-a*exp(-(x1(i)-mu)^2/sigma))^2)
end
and 2.
f1=[10 20 30 40 50]
x1=[1 2 3 4 5]
J=0
J=@(f,x) ((f-a*exp(-(x-mu)^2/sigma))^2)
for i=1:5
J(f1(i),x1(i))
end
and im getting different final answers for each.
can anyone tell why?
0 Kommentare
Akzeptierte Antwort
Guillaume
am 22 Jun. 2015
Really, the best way of implementing your summation is option 3 which uses vectorised operations:
f1=[10 20 30 40 50]
x1=[1 2 3 4 5]
J = sum((f1 - a*exp(-(x1 - mu).^2 / sigma)) .^ 2)
Your option 2 looks like it wants to use J to store the result as in option 1 (since it has the line J = 0), but then put a function in J on the following line. In the loop you invoke the function but never assign the result to anything. I'm not sure what you expected to happen with that code. If you want to use an anonymous function, you could write your option 2 as:
func = @(f,x) (f-a*exp(-(x-mu)^2/sigma))^2;
J = 0;
for idx = 1 : numel(f1) %don't hardcode bounds, use numel to get the number of elements
J = J + func(f1(idx), x1(idx));
end
But again, vectorised code is better:
func = @(f,x) (f-a*exp(-(x-mu).^2/sigma)).^2; %note the use of .^ instead of ^
J = sum(func(f1, x1))
1 Kommentar
Weitere Antworten (1)
Andrei Bobrov
am 22 Jun. 2015
Bearbeitet: Andrei Bobrov
am 22 Jun. 2015
J = sum(f1-a*exp(-(x1-mu).^2/sigma)).^2)
for 2 variant:
f1=[10 20 30 40 50]
x1=[1 2 3 4 5]
J1=0
J=@(f,x) ((f-a*exp(-(x-mu)^2/sigma))^2)
for ii=1:5
J1 = J1 + J(f1(ii),x1(ii))
end
Siehe auch
Kategorien
Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!