How do I integrate a differential equation?

7 Ansichten (letzte 30 Tage)
nashyshan
nashyshan am 1 Jun. 2015
Kommentiert: Walter Roberson am 2 Jun. 2015
Hi, I want to integrate a differential equation dc/dt. Below is the code and the values of the variables.
clear all;
c1=.185;c0=2*10^-6;k3=.1*10^-6;
v1=6;v2=.11;v3=.09*10^-6;
Ca_ER=10*10^-6;Ca_cyto=1.7*10^-6;
p_open3=0.15;c=15*10^-6;
dcdt= (c1*(v1*(p_open3)+v2)*(Ca_ER)-c)-v3*((c)^2)/(c^2+(k3)^2);
I know there is an integral function but I am not sure how to apply for this equation. How do I proceed from here? Please help. The value of initial c, if needed, can be taken as 0.15*10^-6. Also, I need to plot the obtained result versus time. So will get an array of values or just a single value?

Akzeptierte Antwort

Star Strider
Star Strider am 1 Jun. 2015
Try this:
c1=.185;c0=2E-6;k3=1E-7;
v1=6;v2=.11;v3=9E-8;
Ca_ER=10E-6;Ca_cyto=1.7E-6;
p_open3=0.15;
ci=15E-6;
dcdt = @(t,c) (c1.*(v1.*(p_open3)+v2).*(Ca_ER)-c)-v3.*((c).^2)./(c.^2+(k3).^2);
tspan = linspace(0, 10, 25);
[t,c] = ode45(dcdt, tspan, ci);
figure(1)
plot(t, c)
grid
See the documentation for ode45 and Anonymous Functions for details.
  4 Kommentare
nashyshan
nashyshan am 2 Jun. 2015
@john D'Errico. I am supposed to obtain periodic oscillations, but am not able to do so. since I wasn't familiar with the ODE functions in MATLAB I though I was doing something wrong. But I think it has to do with the equations.
Walter Roberson
Walter Roberson am 2 Jun. 2015
Use Star Strider's code but increase the upper time bound. For example,
tspan = linspace(0, 40, 75);
I do not understand why the wiggles are not visible if an upper time bound of 30 is used, but they are visible if 35 is used and clearly peak near 20.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by