finding root using false position method
186 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ayda
am 22 Nov. 2011
Kommentiert: Walter Roberson
am 7 Feb. 2024
Good evening\morning
I try to write a code that calculate the root of a nonlinear function using False Position Method, but I get an infinite loop. I use the same loop for the Bisection Method and it's work.
clc
x0 = input('enter the value of x0 = ');
x1 = input('enter the value of x1 = ');
tolerance=input('inter the tolerance = ');
f =@(x) sin(2*pi*x)+ exp(1.2*x) + x - 2.5;
for i=0:inf
x2= x1 - (f(x1)* (x1-x0)/(f(x1)-f(x0)))
c = f(x2)
absolute_c= abs(c);
if absolute_c < tolerance
break
end
if f(x0)*c <0
x1=x2;
continue
else
x0=x2;
continue
end
end
i
1 Kommentar
Samanta
am 7 Feb. 2024
1.Use the False Position Method to find the root of the equation e^x−3x=0. Start with the initial guesses x_0=0 and x_1 =1
Akzeptierte Antwort
Fangjun Jiang
am 22 Nov. 2011
Do a plot to find out the curve. If you put the right initial value, it could solve the problem.
ezplot(f)
x0=-6
x1=6
Tolerance=0.001
It reached the end at i==590
A better approach is to check whether f(x0)*f(x1)<0 right after the input().
2 Kommentare
Fangjun Jiang
am 22 Nov. 2011
A better approach is to check whether f(x0)*f(x1)<0 right after the input().
Weitere Antworten (4)
Polash Roy
am 10 Apr. 2021
Bearbeitet: Walter Roberson
am 7 Feb. 2024
clc
clear all
close all
f=@(r) exp((-5e-3)*r)*cos((sqrt(2000-.01*r^2)*.05))-.01;
a=100;
b=550;
for i=1:10
x0=a;
x1=b;
fprintf('\n Hence root lies between (%.4f,%.0f)',a,b)
x2(i)=x0-(x1-x0)/(f(x1)-f(x0))*f(x0);
if f(x2(i))*f(x0)>0
b=x2(i);
else
a=x2(i);
end
fprintf('\n Therefore, x2=%.4f \n Here, f(x20=%.4f',x2(i),f(x2(i)))
p=x2(i);
end
for i=1:10
eror(i)=p-x2(i);
end
Answer=p
plot(eror)
grid on;
title('Plot of error')
xlabel('iterations')
ylabel('Error')
0 Kommentare
Aman Pratap Singh
am 3 Dez. 2021
clc
% Setting x as symbolic variable
syms x;
% Input Section
y = input('Enter non-linear equations: ');
a = input('Enter first guess: ');
b = input('Enter second guess: ');
e = input('Tolerable error: ');
% Finding Functional Value
fa = eval(subs(y,x,a));
fb = eval(subs(y,x,b));
% Implementing Bisection Method
if fa*fb > 0
disp('Given initial values do not bracket the root.');
else
c = a - (a-b) * fa/(fa-fb);
fc = eval(subs(y,x,c));
fprintf('\n\na\t\t\tb\t\t\tc\t\t\tf(c)\n');
while abs(fc)>e
fprintf('%f\t%f\t%f\t%f\n',a,b,c,fc);
if fa*fc< 0
b =c;
fb = eval(subs(y,x,b));
else
a =c;
fa = eval(subs(y,x,a));
end
c = a - (a-b) * fa/(fa-fb);
fc = eval(subs(y,x,c));
end
fprintf('\nRoot is: %f\n', c);
end
1 Kommentar
Walter Roberson
am 3 Dez. 2021
Bearbeitet: Walter Roberson
am 3 Dez. 2021
You should never eval() a symbolic expression. Symblic expressions are not character vectors containing MATLAB code. Sometimes they look like MATLAB code, but they contain parts that are not MATLAB, and some of the functions have a different parameter order than MATLAB uses.
If you have fully substituted for all numeric variables, then
fa = double(subs(y,x,a));
fb = double(subs(y,x,b));
Samanta
am 7 Feb. 2024
Use the False Position Method to find the root of the equation e^x−3x=0. Start with the initial guesses x_0=0 and x_1 =1
1 Kommentar
Walter Roberson
am 7 Feb. 2024
This solution does not explain how to use False Position Method, so it is not clear how it answers the question?
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!