Modelling a system of differential equations with recurrences in matlab

61 Ansichten (letzte 30 Tage)
Austin
Austin am 12 Okt. 2025 um 15:06
Bearbeitet: Torsten am 12 Okt. 2025 um 19:29
Trying to model a system in the form
a*u_n(t)'' + b*u_n(t) = k( v_n+1(t) + v_n-1(t) - 2u_n(t) )
c*v_n(t)'' + d*v_n(t) = k( u_n+1(t) + u_n-1(t) - 2v_n(t) )
a,b,c,d,k are all constants
Pretty sure this can only be done numerically
  5 Kommentare
Torsten
Torsten am 12 Okt. 2025 um 18:26
Bearbeitet: Torsten am 12 Okt. 2025 um 18:33
Since the boundary conditions are defined by second-order differential equations for u_0, v_0, u_n and v_n, we need u_i(0), u_i'(0), v_i(0), v_i'(0) for i = 0,...,n.
You said we may assume u_i(0) = v_i(0) = 0 for i=1,...,n-1. So u_0(0),v_0(0),u_n(0),v_n(0) and all derivatives u_i'(0) and v_i'(0) at t = 0 ( (i = 0,...,n) are to be added to the problem description to make the system solvable.
Austin
Austin am 12 Okt. 2025 um 18:38
Of course, the i should be i=0..n not 1..n
Then for the derivatives u_i(0)' = 0.5, v_i(0)' = 0.3

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 12 Okt. 2025 um 19:00
Bearbeitet: Torsten am 12 Okt. 2025 um 19:29
N = 20;
k = 1;
a = 1;
b = 1;
c = 1;
d = 1;
u0 = zeros(N,1);
udot0 = 0.5*ones(N,1);
v0 = zeros(N,1);
vdot0 = 0.3*ones(N,1);
y0 = [u0;udot0;v0;vdot0];
tspan = linspace(0,10,20);
[T,Y] = ode15s(@(t,y)fun(t,y,N,k,a,b,c,d),tspan,y0);
u = Y(:,1:N);
udot = Y(:,N+1:2*N);
v = Y(:,2*N+1:3*N);
vdot = Y(:,3*N+1:4*N);
function dydt = fun(t,y,N,k,a,b,c,d)
u = y(1:N);
udot = y(N+1:2*N);
v = y(2*N+1:3*N);
vdot = y(3*N+1:4*N);
dudt = zeros(N,1);
d2udt2 = zeros(N,1);
dvdt = zeros(N,1);
d2vdt2 = zeros(N,1);
dudt = udot;
dvdt = vdot;
%a*u_1(t)'' + b*u_1(t) = k( v_2(t) - u_1(t) )
%a*u_i(t)'' + b*u_i(t) = k( v_i+1(t) + v_i-1(t) - 2u_i(t) ) (2 <= i <= N-1)
%a*u_N(t)'' + b*u_N(t) = k( v_N-1(t) - u_N(t) )
d2udt2(1) = (-b*u(1)+k*(v(2)-u(1)))/a;
d2udt2(2:N-1) = (-b*u(2:N-1)+k*(v(3:N)+v(1:N-2)-2*u(2:N-1)))/a;
d2udt2(N) = (-b*u(N)+k*(v(N-1)-u(N)))/a;
%c*v_1(t)'' + d*v_1(t) = k( u_2(t) - v_1(t) )
%c*v_i(t)'' + d*v_i(t) = k( u_i+1(t) + u_i-1(t) - 2v_i(t) ) (2 <= i <= N-1)
%c*v_N(t)'' + d*v_N(t) = k( u_N-1(t) - v_N(t) )
d2vdt2(1) = (-d*v(1)+k*(u(2)-v(1)))/c;
d2vdt2(2:N-1) = (-d*v(2:N-1)+k*(u(3:N)+u(1:N-2)-2*v(2:N-1)))/c;
d2vdt2(N) = (-d*v(N)+k*(u(N-1)-v(N)))/c;
dydt = [dudt;d2udt2;dvdt;d2vdt2];
end
  1 Kommentar
Austin
Austin am 12 Okt. 2025 um 19:11
Thanks this was my first time encountering a system of equations like this so this helped a lot

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

John D'Errico
John D'Errico am 12 Okt. 2025 um 15:51
Bearbeitet: John D'Errico am 12 Okt. 2025 um 17:33
This is known as a delay differential equation. You will find any solvers for them starting with the letters dde.
help dde23
dde23 - Solve delay differential equations (DDEs) with constant delays This MATLAB function, where tspan = [t0 tf], integrates the system of delay differential equations y′(t)=f(t,y(t),y(t−τ1),...,y(t−τk)) over the interval specified by tspan, where τ1, ..., τk are constant, positive delays specified by delays. Syntax sol = dde23(ddefun,delays,history,tspan) sol = dde23(ddefun,delays,history,tspan,options) Input Arguments ddefun - System of delay differential equations to solve function handle delays - Time delays positive vector history - Solution history function handle | vector | structure tspan - Interval of integration two-element vector options - Integrator options structure array Output Arguments sol - Solution for evaluation structure array Examples openExample('matlab/DDE23ConstantDelaysExample') openExample('matlab/LocateZeroCrossingsOfDDEExample') See also ddesd, ddensd, ddeget, ddeset, deval Introduced in MATLAB before R2006a Documentation for dde23 doc dde23
You will convert the second order DDEs each into a pair of first order DDEs using the standard trick, so you will have a system of 4 DDEs. Standard trick:
If you have a second order equation of the form:
y''(x) = stuff
you convert it into a pair of first order equations by creating a new unknown function, I'll call it z, where z is just the currently unknown first derivative of y.
y'(x) = z(x)
z'(x) = stuff
The same will apply in your case, even with a DDE.
  1 Kommentar
Austin
Austin am 12 Okt. 2025 um 17:34
Sorry my system of equations were written out poorly each u_i, v_i i=1..n+1 is a funtion of t and has been updated in question. Not sure if dde would still be used in this case

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Programming finden Sie in Help Center und File Exchange

Tags

Produkte


Version

R2025b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by