Plotting sum of two vectors

11 Ansichten (letzte 30 Tage)
Eduardo
Eduardo am 20 Sep. 2025
Bearbeitet: Stephen23 am 24 Sep. 2025
I'm using Runge-Kutta method to solve a coupled system of EDO.
The function y1 is valid until a certain time (here is the "ts2" parameter). After this time, y8 is valid.
I want to plot y1 from 0 to ts2 (which happens without problem) and y8 from ts2 until the end.
But, I get the error "Arrays have incompatible sizes for this operation." during the second part.
%Parameters
or =0.2;
oc = 0.2;
gamma = 0.01;
gam=0.01;
Gamma = 1;
Gamma1 = Gamma;
Gamma2 = Gamma;
Gamma3 = 9/10;
Gamma5 = 1/10;
sig13ts2 = 5.2;
sig57ts = 2.6;
ts2=10;
f1 = @(t,y1,y2) (-Gamma/2-gam/2)*y1 -i*or*y2;
f2 = @(t,y1,y2) -i*or*y1+(-gam/2)*y2;
h=0.0001;
t(1) = 0;
y1(1) = 0;
y2(1) = sig57ts;
for j=1:1100000
t(j+1)=t(j)+h;
k1y1 = h*f1(t(j), y1(j), y2(j));
k1y2 = h*f2(t(j), y1(j), y2(j));
k2y1 = h*f1(t(j)+h/2,y1(j)+k1y1/2,y2(j)+k1y2/2);
k2y2 = h*f2(t(j)+h/2,y1(j)+k1y1/2,y2(j)+k1y2/2);
k3y1 = h*f1(t(j)+h/2,y1(j)+k2y1/2,y2(j)+k2y2/2);
k3y2 = h*f2(t(j)+h/2,y1(j)+k2y1/2,y2(j)+k2y2/2);
k4y1 = h*f1(t(j)+h, y1(j)+k3y1, y2(j)+k3y2);
k4y2 = h*f2(t(j)+h, y1(j)+k3y1, y2(j)+k3y2);
y1(j+1)=y1(j) + (k1y1 + 2*k2y1 + 2*k3y1 + k4y1)/6;
y2(j+1)=y2(j) + (k1y2 + 2*k2y2 + 2*k3y2 + k4y2)/6;
end
plot(t(1:ts2/h),abs(y1(1:ts2/h)).^2)
xlim([0 60])
hold on
%% Ligando C apos ts2
f3 = @(t,y3,y4,y5,y6,y7,y8) -(+Gamma2/2+gam/2)*y3+1i*oc*y4-1i*oc*y5;
f4 = @(t,y3,y4,y5,y6,y7,y8) 1i*oc*y3-(+gamma/2)*y4+Gamma3*y5-1i*oc*y6;
f5 = @(t,y3,y4,y5,y6,y7,y8) -1i*oc*y3-(Gamma1)*y5+1i*oc*y6;
f6 = @(t,y3,y4,y5,y6,y7,y8) -1i*oc*y4+1i*oc*y5+(-Gamma1/2-gamma/2)*y6;
f7 = @(t,y3,y4,y5,y6,y7,y8) -1i*or*y8+(-Gamma2/2-gam/2)*y7;
f8 = @(t,y3,y4,y5,y6,y7,y8) -1i*or*y7+Gamma5*y5-(gam/2)*y8;
t(1) = ts2;
y3(1) = 0;
y4(1) = sig13ts2;
y5(1) = 0;
y6(1) = 0;
y7(1) = y1(ts2/h);
y8(1) = y2(ts2/h);
for j=1:1000000
t(j+1)=t(j)+h;
k1y3 = h*f3(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y4 = h*f4(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y5 = h*f5(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y6 = h*f6(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y7 = h*f7(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y8 = h*f8(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k2y3 = h*f3(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y4 = h*f4(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y5 = h*f5(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y6 = h*f6(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y7 = h*f7(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y8 = h*f8(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k3y3 = h*f3(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y4 = h*f4(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y5 = h*f5(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y6 = h*f6(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y7 = h*f7(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y8 = h*f8(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k4y3 = h*f3(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y4 = h*f4(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y5 = h*f5(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y6 = h*f6(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y7 = h*f7(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y8 = h*f8(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
y3(j+1)=y3(j) + (k1y3 + 2*k2y3 + 2*k3y3 + k4y3)/6;
y4(j+1)=y4(j) + (k1y4 + 2*k2y4 + 2*k3y4 + k4y4)/6;
y5(j+1)=y5(j) + (k1y5 + 2*k2y5 + 2*k3y5 + k4y5)/6;
y6(j+1)=y6(j) + (k1y6 + 2*k2y6 + 2*k3y6 + k4y6)/6;
y7(j+1)=y7(j) + (k1y7 + 2*k2y7 + 2*k3y7 + k4y7)/6;
y8(j+1)=y8(j) + (k1y8 + 2*k2y8 + 2*k3y8 + k4y8)/6;
end
plot(t,abs(y8).^2+abs(y1(ts2/h:end)).^2)
Arrays have incompatible sizes for this operation.

Akzeptierte Antwort

Torsten
Torsten am 20 Sep. 2025
Bearbeitet: Torsten am 21 Sep. 2025
%Parameters
or =0.2;
oc = 0.2;
gamma = 0.01;
gam=0.01;
Gamma = 1;
Gamma1 = Gamma;
Gamma2 = Gamma;
Gamma3 = 9/10;
Gamma5 = 1/10;
sig13ts2 = 5.2;
sig57ts = 2.6;
ts2=10;
f1 = @(t,y1,y2) (-Gamma/2-gam/2)*y1 -i*or*y2;
f2 = @(t,y1,y2) -i*or*y1+(-gam/2)*y2;
h=0.0001;
t(1) = 0;
y1(1) = 0;
y2(1) = sig57ts;
for j=1:1100000
t(j+1)=t(j)+h;
k1y1 = h*f1(t(j), y1(j), y2(j));
k1y2 = h*f2(t(j), y1(j), y2(j));
k2y1 = h*f1(t(j)+h/2,y1(j)+k1y1/2,y2(j)+k1y2/2);
k2y2 = h*f2(t(j)+h/2,y1(j)+k1y1/2,y2(j)+k1y2/2);
k3y1 = h*f1(t(j)+h/2,y1(j)+k2y1/2,y2(j)+k2y2/2);
k3y2 = h*f2(t(j)+h/2,y1(j)+k2y1/2,y2(j)+k2y2/2);
k4y1 = h*f1(t(j)+h, y1(j)+k3y1, y2(j)+k3y2);
k4y2 = h*f2(t(j)+h, y1(j)+k3y1, y2(j)+k3y2);
y1(j+1)=y1(j) + (k1y1 + 2*k2y1 + 2*k3y1 + k4y1)/6;
y2(j+1)=y2(j) + (k1y2 + 2*k2y2 + 2*k3y2 + k4y2)/6;
end
plot(t(1:ts2/h+1),abs(y1(1:ts2/h+1)).^2)
xlim([0 60])
hold on
%% Ligando C apos ts2
f3 = @(t,y3,y4,y5,y6,y7,y8) -(+Gamma2/2+gam/2)*y3+1i*oc*y4-1i*oc*y5;
f4 = @(t,y3,y4,y5,y6,y7,y8) 1i*oc*y3-(+gamma/2)*y4+Gamma3*y5-1i*oc*y6;
f5 = @(t,y3,y4,y5,y6,y7,y8) -1i*oc*y3-(Gamma1)*y5+1i*oc*y6;
f6 = @(t,y3,y4,y5,y6,y7,y8) -1i*oc*y4+1i*oc*y5+(-Gamma1/2-gamma/2)*y6;
f7 = @(t,y3,y4,y5,y6,y7,y8) -1i*or*y8+(-Gamma2/2-gam/2)*y7;
f8 = @(t,y3,y4,y5,y6,y7,y8) -1i*or*y7+Gamma5*y5-(gam/2)*y8;
t = [];
t(1) = ts2;
y3(1) = 0;
y4(1) = sig13ts2;
y5(1) = 0;
y6(1) = 0;
y7(1) = y1(ts2/h+1);
y8(1) = y2(ts2/h+1);
for j=1:1000000
t(j+1)=t(j)+h;
k1y3 = h*f3(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y4 = h*f4(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y5 = h*f5(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y6 = h*f6(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y7 = h*f7(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y8 = h*f8(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k2y3 = h*f3(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y4 = h*f4(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y5 = h*f5(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y6 = h*f6(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y7 = h*f7(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y8 = h*f8(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k3y3 = h*f3(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y4 = h*f4(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y5 = h*f5(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y6 = h*f6(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y7 = h*f7(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y8 = h*f8(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k4y3 = h*f3(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y4 = h*f4(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y5 = h*f5(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y6 = h*f6(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y7 = h*f7(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y8 = h*f8(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
y3(j+1)=y3(j) + (k1y3 + 2*k2y3 + 2*k3y3 + k4y3)/6;
y4(j+1)=y4(j) + (k1y4 + 2*k2y4 + 2*k3y4 + k4y4)/6;
y5(j+1)=y5(j) + (k1y5 + 2*k2y5 + 2*k3y5 + k4y5)/6;
y6(j+1)=y6(j) + (k1y6 + 2*k2y6 + 2*k3y6 + k4y6)/6;
y7(j+1)=y7(j) + (k1y7 + 2*k2y7 + 2*k3y7 + k4y7)/6;
y8(j+1)=y8(j) + (k1y8 + 2*k2y8 + 2*k3y8 + k4y8)/6;
end
plot(t,abs(y8).^2+abs(y1(ts2/h+1:end)).^2)
hold off
  1 Kommentar
Eduardo
Eduardo am 21 Sep. 2025
Thank you for answering, it was really helpful.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Stephen23
Stephen23 am 21 Sep. 2025
Bearbeitet: Stephen23 am 24 Sep. 2025
Use numbered variable names if you really enjoy writing lots of code.
Otherwise do something more like this:
%% Parameters
or = 0.2;
oc = 0.2;
gamma = 0.01;
gam = 0.01;
Gamma = 1;
Gamma1 = Gamma;
Gamma2 = Gamma;
Gamma3 = 9/10;
Gamma5 = 1/10;
sig13ts2 = 5.2;
sig57ts = 2.6;
ts2 = 10;
h = 0.0001;
%% Phase 1: 2-variable system (t = 0 to ts2)
% dy/dt = A*y where y = [y1; y2]
A1 = [-Gamma/2-gam/2, -1i*or; -1i*or, -gam/2];
% Initial conditions
t1 = 0:h:ts2;
n1 = length(t1);
y = zeros(2,n1);
y(:,1) = [0; sig57ts];
% RK4 integration for phase 1
for j = 1:n1-1
k1 = h * A1 * y(:,j);
k2 = h * A1 * (y(:,j) + k1/2);
k3 = h * A1 * (y(:,j) + k2/2);
k4 = h * A1 * (y(:,j) + k3);
y(:,j+1) = y(:,j) + (k1 + 2*k2 + 2*k3 + k4)/6;
end
% Plot phase 1
plot(t1, abs(y(1,:)).^2)
xlim([0,60])
hold on
%% Phase 2: 6-variable system (t = ts2 onwards)
% System matrix for [y3; y4; y5; y6; y7; y8]
A2 = [-Gamma2/2-gam/2, 1i*oc, -1i*oc, 0, 0, 0;...
1i*oc, -gamma/2, Gamma3, -1i*oc, 0, 0;...
-1i*oc, 0, -Gamma1, 1i*oc, 0, 0;...
0, -1i*oc, 1i*oc, -Gamma1/2-gamma/2, 0, 0;...
0, 0, 0, 0, -Gamma2/2-gam/2, -1i*or;...
0, 0, Gamma5, 0, -1i*or, -gam/2];
% Initial conditions for phase 2
n2 = 1000000;
t2 = zeros(1,n2+1);
t2(1) = ts2;
z = zeros(6, n2+1);
z(:,1) = [0; sig13ts2; 0; 0; y(1,end); y(2,end)];
% RK4 integration for phase 2
for j = 1:n2
t2(j+1) = t2(j) + h;
k1 = h * A2 * z(:,j);
k2 = h * A2 * (z(:,j) + k1/2);
k3 = h * A2 * (z(:,j) + k2/2);
k4 = h * A2 * (z(:,j) + k3);
z(:,j+1) = z(:,j) + (k1 + 2*k2 + 2*k3 + k4)/6;
end
plot(t2, abs(z(5,:)).^2 + abs(z(6,:)).^2)

Kategorien

Mehr zu Gamma Functions finden Sie in Help Center und File Exchange

Produkte


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by