Info
Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.
Creating CNN architecture for binary classification
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I’m reaching out to kindly ask if somone could review the CNN architecture I’ve implemented in MATLAB. The code is running as expected, but I’d appreciate your expert opinion to confirm whether the structure is sound and appropriate for the task.
Below is a snippet of the architecture and training configuration:
matlab
CopyEdit
%% === CNN Architecture ===
layers = [
sequenceInputLayer(1, 'Name', 'input', 'MinLength', minTrainLen)
convolution1dLayer(5, 32, 'Padding', 'same', 'Name', 'conv1')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name', 'relu1')
maxPooling1dLayer(2, 'Stride', 2, 'Name', 'pool1')
convolution1dLayer(3, 64, 'Padding', 'same', 'Name', 'conv2')
batchNormalizationLayer('Name', 'bn2')
reluLayer('Name', 'relu2')
dropoutLayer(0.3, 'Name', 'dropout1')
globalAveragePooling1dLayer('Name', 'gap')
fullyConnectedLayer(32, 'Name', 'fc1')
reluLayer('Name', 'relu3')
fullyConnectedLayer(2, 'Name', 'fc_output')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'output')
];
%% === Training Options ===
options = trainingOptions('adam', ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 30, ...
'MiniBatchSize', max(1, min(64, numel(XTrainFinal))), ...
'Shuffle', 'every-epoch', ...
'ValidationData', {XVal, YVal}, ...
'ValidationFrequency', 5, ...
'ValidationPatience', 2, ...
'Verbose', false, ...
'Plots', 'none', ...
'ExecutionEnvironment', 'auto');
Antworten (0)
Diese Frage ist geschlossen.
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!