Can someone rectify this code?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
function F = myfun(Q)
ks = 0.015/12; % ks of pipe in ft
D = [8/12 6/12 8/12 8/12 6/12 6/12 6/12 8/12 6/12 6/12]; % Diameter of pipes in ft (10 values)
L = [1000 2000 2000 1000 1000 1000 2000 1000 2500 2500]; % Lengths of pipes in ft (10 values)
nu = 1.06*(10^-5); % kinematic viscosity in ft^2/s
Re(:) = 4*(abs(Q(:)))./(pi.*nu.*D(:)); % Reynolds number from assumed flow
f(:)= 0.25./ (log10((ks./(3.7*D(:)))+(5.74./(Re(:).^ 0.9)))).^2; % Swamee-Jain friction factor equation
K(:) = (8 .*f(:) .*L(:))./(pi.*pi.*32.2*D(:).^5);
hp = (42.5-10.4*(Q(10)^2)+2.8*abs(Q(10)))*(Q(10)/abs(Q(10))); % Pump head equation
% System of equations
F(1) = -2.2 + Q(1) - Q(2) - Q(6) + Q(9);
F(2) = Q(2) + Q(3) - 1.7;
F(3) = Q(4) - Q(3) + Q(5) + Q(10) - 1.9;
F(4) = Q(6) - Q(4) + Q(7);
F(5) = - Q(9) - Q(7) - Q(10) + Q(8);
F(6) = K(2) * Q(2) * abs(Q(2)) - K(3) * Q(3) * abs(Q(3)) - K(6) * Q(6) * abs(Q(6)) - K(4) * Q(4) * abs(Q(4));
F(7) = hp + K(8) * Q(8) * abs(Q(8)) + K(9) * Q(9) * abs(Q(9)) - K(1) * Q(1) * abs(Q(1)) + 30;
F(8) = hp - K(8) * Q(8) * abs(Q(8)) - K(10) * Q(10) * abs(Q(10)) + K(5) * Q(5) * abs(Q(5)) - 15;
F(9) = K(6) * Q(6) * abs(Q(6)) - K(7) * Q(7) * abs(Q(7)) + K(9) * Q(9) * abs(Q(9));
F(10) = K(4) * Q(4) * abs(Q(4)) + K(7) * Q(7) * abs(Q(7)) - K(10) * Q(10) * abs(Q(10));
end
Call
clc
clear all
Q0=[1 1 1 1 1 1 1 1 1]; out=[(1:1:10) ' fsolve(@myfun, Q0) '];
Output is displayed alongside:
function F = myfun(Q)
↑
Error: Function definitions are not supported in this context. Functions can only be created as local or nested functions in code files.
0 Kommentare
Antworten (4)
Image Analyst
am 23 Feb. 2025
When you do this:
out=[(1:1:10) ' fsolve(@myfun, Q0) ']
it's trying to take a vector [1,2,3,4,5,6,7,8,9,10] and append a string ' fsolve(@myfun, Q0) '. It's a string because it's inside single quotes. You can't append a string to a double.
Also, I suspect in myfun.m that there is some lines of code before the "function F = myfun(Q)" line of code.
1 Kommentar
Walter Roberson
am 23 Feb. 2025
out=[(1:1:10) ' fsolve(@myfun, Q0) ']
That "works". It converts the 1:10 to unicode positions char(1) through char(10), and the appends the fsolve string. char(10) happens to be newline, so the output display is split across two lines.
VBBV
am 23 Feb. 2025
Bearbeitet: VBBV
am 23 Feb. 2025
function F = myfun(Q)
ks = 0.015/12; % ks of pipe in ft
D = [8/12 6/12 8/12 8/12 6/12 6/12 6/12 8/12 6/12 6/12]; % Diameter of pipes in ft (10 values)
L = [1000 2000 2000 1000 1000 1000 2000 1000 2500 2500]; % Lengths of pipes in ft (10 values)
nu = 1.06*(10^-5); % kinematic viscosity in ft^2/s
Re(:) = 4*(abs(Q(:)))./(pi.*nu.*D(:)); % Reynolds number from assumed flow
f(:)= 0.25./ (log10((ks./(3.7*D(:)))+(5.74./(Re(:).^ 0.9)))).^2; % Swamee-Jain friction factor equation
K(:) = (8 .*f(:) .*L(:))./(pi.*pi.*32.2*D(:).^5);
hp = (42.5-10.4*(Q(10)^2)+2.8*abs(Q(10)))*(Q(10)/abs(Q(10))); % Pump head equation
% System of equations
F(1) = -2.2 + Q(1) - Q(2) - Q(6) + Q(9);
F(2) = Q(2) + Q(3) - 1.7;
F(3) = Q(4) - Q(3) + Q(5) + Q(10) - 1.9;
F(4) = Q(6) - Q(4) + Q(7);
F(5) = - Q(9) - Q(7) - Q(10) + Q(8);
F(6) = K(2) * Q(2) * abs(Q(2)) - K(3) * Q(3) * abs(Q(3)) - K(6) * Q(6) * abs(Q(6)) - K(4) * Q(4) * abs(Q(4));
F(7) = hp + K(8) * Q(8) * abs(Q(8)) + K(9) * Q(9) * abs(Q(9)) - K(1) * Q(1) * abs(Q(1)) + 30;
F(8) = hp - K(8) * Q(8) * abs(Q(8)) - K(10) * Q(10) * abs(Q(10)) + K(5) * Q(5) * abs(Q(5)) - 15;
F(9) = K(6) * Q(6) * abs(Q(6)) - K(7) * Q(7) * abs(Q(7)) + K(9) * Q(9) * abs(Q(9));
F(10) = K(4) * Q(4) * abs(Q(4)) + K(7) * Q(7) * abs(Q(7)) - K(10) * Q(10) * abs(Q(10));
end
clc
clear all
Q0=[1 1 1 1 1 1 1 1 1 1] % check the size of this vector
out=[(1:1:10) fsolve(@myfun, Q0)]
1 Kommentar
VBBV
am 23 Feb. 2025
You are probably running a different version of Matlab as torsten mentioned where the function definitions are not supported before the call to function. You can instead put the entire function code myfun after fsolve call. Note that number of equations inside the myfun and number of conditions to passed to fsolve are not same as mentioned in my previous comment.
Torsten
am 23 Feb. 2025
Bearbeitet: Torsten
am 23 Feb. 2025
My guess is that you work with an older MATLAB version where script and function parts cannot be mixed. Thus save
function F = myfun(Q)
ks = 0.015/12; % ks of pipe in ft
D = [8/12 6/12 8/12 8/12 6/12 6/12 6/12 8/12 6/12 6/12]; % Diameter of pipes in ft (10 values)
L = [1000 2000 2000 1000 1000 1000 2000 1000 2500 2500]; % Lengths of pipes in ft (10 values)
nu = 1.06*(10^-5); % kinematic viscosity in ft^2/s
Re(:) = 4*(abs(Q(:)))./(pi.*nu.*D(:)); % Reynolds number from assumed flow
f(:)= 0.25./ (log10((ks./(3.7*D(:)))+(5.74./(Re(:).^ 0.9)))).^2; % Swamee-Jain friction factor equation
K(:) = (8 .*f(:) .*L(:))./(pi.*pi.*32.2*D(:).^5);
hp = (42.5-10.4*(Q(10)^2)+2.8*abs(Q(10)))*(Q(10)/abs(Q(10))); % Pump head equation
% System of equations
F(1) = -2.2 + Q(1) - Q(2) - Q(6) + Q(9);
F(2) = Q(2) + Q(3) - 1.7;
F(3) = Q(4) - Q(3) + Q(5) + Q(10) - 1.9;
F(4) = Q(6) - Q(4) + Q(7);
F(5) = - Q(9) - Q(7) - Q(10) + Q(8);
F(6) = K(2) * Q(2) * abs(Q(2)) - K(3) * Q(3) * abs(Q(3)) - K(6) * Q(6) * abs(Q(6)) - K(4) * Q(4) * abs(Q(4));
F(7) = hp + K(8) * Q(8) * abs(Q(8)) + K(9) * Q(9) * abs(Q(9)) - K(1) * Q(1) * abs(Q(1)) + 30;
F(8) = hp - K(8) * Q(8) * abs(Q(8)) - K(10) * Q(10) * abs(Q(10)) + K(5) * Q(5) * abs(Q(5)) - 15;
F(9) = K(6) * Q(6) * abs(Q(6)) - K(7) * Q(7) * abs(Q(7)) + K(9) * Q(9) * abs(Q(9));
F(10) = K(4) * Q(4) * abs(Q(4)) + K(7) * Q(7) * abs(Q(7)) - K(10) * Q(10) * abs(Q(10));
end
as "myfun.m" and save
clc
clear all
Q0=[1 1 1 1 1 1 1 1 1]; out=[(1:1:10) ' fsolve(@myfun, Q0) '];
as "script.m" in your working directory.
And - as @VBBV noticed - change the size of Q0 to a 10-element vector instead of a 9-element vector.
Then open "script.m" in the MATLAB editor and click on the green RUN button.
1 Kommentar
Walter Roberson
am 23 Feb. 2025
In particular R2015b was the first version that permitted mixing script first and then function.
Quite recently, MATLAB also permits code to be mixed as function first and then script
Alex Sha
am 27 Feb. 2025
Not sure if I got it right,is the result looks like below?
q1: 4.08694965230257
q2: 0.880101638404846
q3: 0.81989836159516
q4: 1.4732445577558
q5: 0.557067224938124
q6: 0.876903042701873
q7: 0.596341515053935
q8: 1.15598312275933
q9: -0.129944971195848
q10: 0.689586578901236
1 Kommentar
Sam Chak
am 27 Feb. 2025
Q = [4.08694965230257
0.880101638404846
0.81989836159516
1.4732445577558
0.557067224938124
0.876903042701873
0.596341515053935
1.15598312275933
-0.129944971195848
0.689586578901236];
F = myfun(Q)'
function F = myfun(Q)
ks = 0.015/12; % ks of pipe in ft
D = [8/12 6/12 8/12 8/12 6/12 6/12 6/12 8/12 6/12 6/12]; % Diameter of pipes in ft (10 values)
L = [1000 2000 2000 1000 1000 1000 2000 1000 2500 2500]; % Lengths of pipes in ft (10 values)
nu = 1.06*(10^-5); % kinematic viscosity in ft^2/s
Re(:) = 4*(abs(Q(:)))./(pi.*nu.*D(:)); % Reynolds number from assumed flow
f(:) = 0.25./ (log10((ks./(3.7*D(:)))+(5.74./(Re(:).^ 0.9)))).^2; % Swamee-Jain friction factor equation
K(:) = (8 .*f(:) .*L(:))./(pi.*pi.*32.2*D(:).^5);
hp = (42.5-10.4*(Q(10)^2)+2.8*abs(Q(10)))*(Q(10)/abs(Q(10))); % Pump head equation
% System of equations
F(1) = -2.2 + Q(1) - Q(2) - Q(6) + Q(9);
F(2) = Q(2) + Q(3) - 1.7;
F(3) = Q(4) - Q(3) + Q(5) + Q(10) - 1.9;
F(4) = Q(6) - Q(4) + Q(7);
F(5) = - Q(9) - Q(7) - Q(10) + Q(8);
F(6) = K(2) * Q(2) * abs(Q(2)) - K(3) * Q(3) * abs(Q(3)) - K(6) * Q(6) * abs(Q(6)) - K(4) * Q(4) * abs(Q(4));
F(7) = hp + K(8) * Q(8) * abs(Q(8)) + K(9) * Q(9) * abs(Q(9)) - K(1) * Q(1) * abs(Q(1)) + 30;
F(8) = hp - K(8) * Q(8) * abs(Q(8)) - K(10) * Q(10) * abs(Q(10)) + K(5) * Q(5) * abs(Q(5)) - 15;
F(9) = K(6) * Q(6) * abs(Q(6)) - K(7) * Q(7) * abs(Q(7)) + K(9) * Q(9) * abs(Q(9));
F(10) = K(4) * Q(4) * abs(Q(4)) + K(7) * Q(7) * abs(Q(7)) - K(10) * Q(10) * abs(Q(10));
end
Siehe auch
Kategorien
Mehr zu Simulation and Analysis finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!