Converting product into individual entries

3 Ansichten (letzte 30 Tage)
Mahendra Yadav
Mahendra Yadav am 20 Jan. 2025
Kommentiert: Mahendra Yadav am 21 Jan. 2025
Can I write [4*3 5 7*0 11 3*9] in the following format.
[3,3,3,3,5,0,0,0,0,0,0,0,11,9,9,9]
  3 Kommentare
Mahendra Yadav
Mahendra Yadav am 20 Jan. 2025
For any product, Let's say we have a*b.
Then "a" refers here to the number of times, the value "b" should appear.
Hence for a*b, we have
[b,b,b,b,b,b.....(a times)]
Stephen23
Stephen23 am 20 Jan. 2025
@Mahendra Yadav: Sure, I know what product is. But nowhere do you explain how were are supposed to determine which factors you want to use. For example, given the product 12 you could have:
  • a=3 b=4
  • a=4 b=3
  • a=2 b=6
  • a=6 b=2
  • a=1 b=12
  • a=12 b=1
So far you have given absolutely no explanation of how you want to select the specific factors given some random value.
Or perhaps you are just not explaining the form that your data actually have. I cannot guess this.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Steven Lord
Steven Lord am 20 Jan. 2025
If you have the individual terms and their replication factors already, see the repelem function. If you don't you may need to use the factor function first.
  2 Kommentare
Mahendra Yadav
Mahendra Yadav am 20 Jan. 2025
Yes, I'm aware about both of these functions. But how can I implement these in the above mentioned array.
Or
wheter any alternative solutions are possible?
Steven Lord
Steven Lord am 20 Jan. 2025
Do you have your data in this form?
option1 = [4*3 5 7*0 11 3*9]
option1 = 1×5
12 5 0 11 27
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Or do you have data in this form?
option2a = [4 1 7 1 3]
option2a = 1×5
4 1 7 1 3
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
option2b = [3 5 0 11 9]
option2b = 1×5
3 5 0 11 9
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
If you have option 1, how do you handle the ambiguity with 7*0 called out by Stephen23?
And since you seem to be trying to do something with prime factorizations, why is the first group [3 3 3 3] and not [2 2 2 2 2 2] (which you would write 6*2)? Both those groups sum to 12 which is the first element of option1, so how do you disambiguate? And why isn't the third group just empty [] (zero 7s) instead of [0 0 0 0 0 0 0] (seven 0s)?
With option 2:
x = repelem(option2b, option2a)
x = 1×16
3 3 3 3 5 0 0 0 0 0 0 0 11 9 9 9
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Xiaotao
Xiaotao am 20 Jan. 2025
a = [3*ones(1,4), 5, zeros(1,7), 11, 9*ones(1,3)]
a = 1×16
3 3 3 3 5 0 0 0 0 0 0 0 11 9 9 9
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
  4 Kommentare
Stephen23
Stephen23 am 21 Jan. 2025
The simpler MATLAB approach:
cnt = [4,1,7,1,3]; % counts
val = [3,5,0,11,9]; % values
out = repelem(val,cnt)
out = 1×16
3 3 3 3 5 0 0 0 0 0 0 0 11 9 9 9
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Mahendra Yadav
Mahendra Yadav am 21 Jan. 2025
Thank You!
It worked

Melden Sie sich an, um zu kommentieren.

Tags

Produkte


Version

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by