is there a way for a creation of variables for machine learning inside a loop from a dataset of waves

4 Ansichten (letzte 30 Tage)
i have this dataset of wavelengths, problem is they are flipped and as such whenever i load the data i run a secondary part to rotate and flip, though so far i only have a way to read it and not really make use of it inside an ai machine learning thing
clc; clear; close all;
load('-mat','sub-036_task-eyesclosed_eeg.set','data','group','subject')
data_plot=flip(rot90(data,1));
N=width(data_plot);
B=height(data_plot);
figure
%----------------------- all of this is just for plotting and seeing it in stackedplot
T = array2table(data_plot, 'VariableNames',"CH: "+(1:N));
s = stackedplot(T);
s.AxesProperties(1);
ax = findobj(s.NodeChildren, 'Type','Axes');
set(ax, 'YTick', []);
%--------------------------
xlim([-500 B+500])
grid on
set (zoom(gcf), 'Motion', 'horizontal', 'Enable', 'on');
%--------------------------
i was wondering if there is a way to make like a for loop so in each loop i get data_1 then data_2 data_3 etc etc etc or how could i use a machine learning or signal labeler app or ai or artificial neural network and deal with the issue that i need to rotateflip the data?
  2 Kommentare
Stephen23
Stephen23 am 8 Dez. 2024
Bearbeitet: Stephen23 am 8 Dez. 2024
"i was wondering if there is a way to make like a for loop so in each loop i get data_1 then data_2 data_3 etc etc etc "
The most important change is to always LOAD into an output variable:
S = load(..);
which you can then trivially loop over the fieldnames:
F = fieldnames(S);
for k = 1:numel(F)
A = S.(F{k});
.. do whatever with A
end
See also:

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Walter Roberson
Walter Roberson am 28 Nov. 2024
data_names = who('-file', 'sub-036_task-eyesclosed_eeg.set', '-regexp', '^data_\d+$');
for DNI = 1:length(data_names)
thisvar = data_names{DNI};
DS = load('-mat','sub-036_task-eyesclosed_eeg.set', thisvar);
data = DS.(thisvar);
%stuff
end
  6 Kommentare
Walter Roberson
Walter Roberson am 7 Dez. 2024
x = [1 2 3 4];
y = [100 200 300 400];
data = [x; y];
data
data = 2×4
1 2 3 4 100 200 300 400
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
flip(data)
ans = 2×4
100 200 300 400 1 2 3 4
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
data.'
ans = 4×2
1 100 2 200 3 300 4 400
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
flip(data.')
ans = 4×2
4 400 3 300 2 200 1 100
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
rot90(data,1)
ans = 4×2
4 400 3 300 2 200 1 100
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
flip(rot90(data,1))
ans = 4×2
1 100 2 200 3 300 4 400
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
so data.' gives the same result as flip(rot90(data,1)).

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Time and Frequency Domain Analysis finden Sie in Help Center und File Exchange

Produkte


Version

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by