Info
Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.
a code using function_handle is not woring
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
matlab
% Define the domain and grid size
L = 3; % length of the domain
N = 2; % number of grid points in each direction
x = linspace(-L/2,L/2,N);
y = linspace(-L/2,L/2,N);
z = linspace(-L/2,L/2,N);
[X,Y,Z] = meshgrid(x,y,z);
dx = x(2)-x(1);
% Define the potential function
V = -1./sqrt(X.^2+Y.^2+Z.^2); % Coulomb potential
% Define the Laplacian operator using central differences
Lap = @(f) (circshift(f,[0,0,-1])+circshift(f,[0,0,1])+circshift(f,[0,-1,0])+circshift(f,[0,1,0])+circshift(f,[-1,0,0])+circshift(f,[1,0,0])-6*f)/(dx^2)*(-0.5);
% Set up the initial wave function (1s state)
psi = exp(-sqrt(X.^2+Y.^2+Z.^2)); % Gaussian wave packet
% Normalize the wave function
psi = psi./sqrt(sum(abs(psi(:)).^2*dx^3));
% Define the Hamiltonian operator
H=Lap+diag(V(:));
% Set up the time evolution parameters
dt = 0.01; % time step
%tmax = 10; % maximum time
tmax = 0.02; % maximum time
t = 0:dt:tmax;
% Solve the time-dependent Schrodinger equation using the Crank-Nicolson method
for n = 1:length(t)
psi = (eye(N^3)-0.5i*dt*H)\(eye(N^3)+0.5i*dt*H)*psi;
psi = psi./sqrt(sum(abs(psi(:)).^2*dx^3)); % renormalize
end
% Calculate the energy levels by finding the eigenvalues of the Hamiltonian
[E,D] = eigs(H,10,'sr');
E = diag(E); % extract the eigenvalues
E = E(E<0); % take only the negative energy levels (bound states)
% Print the energy levels
disp('Energy levels:');
disp(E);
2 Kommentare
Torsten
am 13 Nov. 2024
"Lap" is a function handle and has to be called with an explicit argument f:
H=Lap(f)+diag(V(:));
I don't know what f is in your code from above.
Antworten (0)
Diese Frage ist geschlossen.
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!