solving a nonlinear equation with complex numbers
35 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Mimo T
am 7 Nov. 2024 um 19:37
Bearbeitet: Paul
am 7 Nov. 2024 um 22:15
I want to get the values of resistance and reactance of a parallal impedance that gives me specific value for magnitude and phase of the reflection coefficient. Resistance must be positive only while X must be a real number. This is my code
syms R
syms X
Z=(R*1i*X/(R+1i*X));
r=(Z-Zo)/(Z+Zo);
assume(R,'positive')
assume(X,'real')
eqn=[abs(r)==0.5, angle(r)==55*pi/180];
[R1,X1]=vpasolve(eqn,[R,X])
I can not add these constains like solve function and sometimes R becomes negative. (solve function can't be used here because it gives me a warning that vpasolve is used).
Trying to add R>0 in cases vpasolve gives positive R, leads to empty solution.
2 Kommentare
Akzeptierte Antwort
Walter Roberson
am 7 Nov. 2024 um 22:09
Bearbeitet: Walter Roberson
am 7 Nov. 2024 um 22:10
Zo = 50;
syms R
syms X
Z=(R*1i*X/(R+1i*X));
r=(Z-Zo)/(Z+Zo);
assume(R,'positive')
assume(X,'real')
eqn=[abs(r)==0.5, angle(r)==55*pi/180];
[R1,X1]=vpasolve(eqn,[R,X], [0 inf; -inf inf]);
disp(char(R1))
disp(char(X1))
0 Kommentare
Weitere Antworten (2)
Paul
am 7 Nov. 2024 um 22:14
Bearbeitet: Paul
am 7 Nov. 2024 um 22:15
Does this solution work?
syms R
syms X
Zo = sym(50);
Z=(R*1i*X/(R+1i*X));
r=(Z-Zo)/(Z+Zo);
assume(R,'positive')
assume(X,'real')
eqn=[abs(r)==0.5, angle(r)==55*pi/180];
[R1,X1]=vpasolve(eqn,[R,X],[0,inf;-inf,inf]) % specify initial search bounds
double([R1,X1])
%sol = solve(eqn,[R,X],'ReturnConditions',true)
0 Kommentare
John D'Errico
am 7 Nov. 2024 um 21:00
Bearbeitet: John D'Errico
am 7 Nov. 2024 um 21:03
syms R positive % positive implicitly implies real also
syms X real
syms Zo
Z=(R*1i*X/(R+1i*X));
r=(Z-Zo)/(Z+Zo)
r = simplify(r)
Suppose we knew the value of Zo? I'll pick 0.5 as an example.
r_Zo = subs(r,Zo,0.5)
eqn = [abs(r_Zo)==0.5, angle(r_Zo)==55*pi/180]
Now, can we solve this?
RX = solve(eqn,[R,X],returnconditions = true)
Essentially, solve is telling us it cannot find an algebraic form for the solution. However, as long as Zo is known, we can use a numerical tool like vpasolve.
RX = vpasolve(eqn,[R,X])
The problem is, if Zo is left unknown, then there will be no analytical solution for the problem. You cannot use solve, as I just showed, and vpasolve cannot be employed to solve problems with unknown symbolic dependencies.
(Sadly, Answers is bugged, and it is not showing the symbolic output. One year they will fix this, what was working nicely only a month or so ago, and what does OCCASIONALLY work to this day. SIGH.)
2 Kommentare
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!