Rearrange elements of matrix based on an index matrix

3 Ansichten (letzte 30 Tage)
Hossein Kazemi
Hossein Kazemi am 27 Aug. 2024
Kommentiert: Hossein Kazemi am 27 Aug. 2024
I have a 5x3 matrix and I want to rearrange each row according to the correponding row of a 5x3 index matrix
x=randn(5,3)
x = 5x3
-0.2616 0.3522 -0.4451 -1.1699 0.8921 1.7676 1.4354 1.1977 -0.3197 -1.2002 0.9392 0.7452 -0.8374 -1.3827 0.2679
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
z=randn(5,3)
z = 5x3
-0.1687 0.4662 1.3644 0.1290 -3.2728 -0.8944 -0.7820 0.2506 -1.0295 0.0976 -0.0797 -0.2671 0.2607 -0.0966 -0.1679
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
[~,I]=sort(x,2)
I = 5x3
3 1 2 1 2 3 3 2 1 1 3 2 2 1 3
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Now I want to sort rows of z using the index matrix I. But using the following does not work. For example, I want the first row of zz to be sorted according to the first row of x, which should result in zz(1,:)= [1.3644, -0.1687, 0.4662].
zz=z(I)
zz = 5x3
-0.7820 -0.1687 0.1290 -0.1687 0.1290 -0.7820 -0.7820 0.1290 -0.1687 -0.1687 -0.7820 0.1290 0.1290 -0.1687 -0.7820
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

Akzeptierte Antwort

Stephen23
Stephen23 am 27 Aug. 2024
Bearbeitet: Stephen23 am 27 Aug. 2024
Yes, it is awkward.
x=randn(5,3)
x = 5x3
0.9687 -0.7929 2.0516 -0.1236 0.2917 -0.9487 -1.4717 0.0275 1.1722 0.2800 1.5357 0.2596 -0.9693 -0.1854 0.3145
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
z=randn(5,3)
z = 5x3
-1.6696 0.6182 -1.4586 0.1528 1.6729 1.4683 0.3576 -1.0089 0.8616 2.1993 0.6213 -1.2327 -0.3246 -0.8133 1.0463
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
[~,I] = sort(x,2)
I = 5x3
2 1 3 3 1 2 1 2 3 3 1 2 1 2 3
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Perhaps
S = size(I);
[R,~] = ndgrid(1:S(1),1:S(2));
J = sub2ind(S,R,I);
zz = z(J)
zz = 5x3
0.6182 -1.6696 -1.4586 1.4683 0.1528 1.6729 0.3576 -1.0089 0.8616 -1.2327 2.1993 0.6213 -0.3246 -0.8133 1.0463
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Or
zz = z;
for k = 1:size(I,1)
zz(k,:) = zz(k,I(k,:));
end
zz
zz = 5x3
0.6182 -1.6696 -1.4586 1.4683 0.1528 1.6729 0.3576 -1.0089 0.8616 -1.2327 2.1993 0.6213 -0.3246 -0.8133 1.0463
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Or
zz = cell2mat(cellfun(@(v,x)v(x),num2cell(z,2),num2cell(I,2),'uni',0))
zz = 5x3
0.6182 -1.6696 -1.4586 1.4683 0.1528 1.6729 0.3576 -1.0089 0.8616 -1.2327 2.1993 0.6213 -0.3246 -0.8133 1.0463
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
  1 Kommentar
Hossein Kazemi
Hossein Kazemi am 27 Aug. 2024
Thanks. The first solution appears to be the fastest (my matrix is 3400x67).

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by