"Unable to resolve the name"
13 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to code an optimization script to maximize the lift-drag ratio of a turbine blade, as functions of geometrical features on a Bezier curve. I have trained models using data generated from CFD on Regression Learner App, using Gaussian Process Regression, and I tried following this tutorial: https://www.mathworks.com/videos/part-4-problem-based-nonlinear-programming-1549458887351.html
I get the following error related to the models being called:
Unrecognized function or variable 'model_name'
For some reason, I can't get the script to run models (in the form of 1x1 structures) to recognize the models already loaded on the workspace. And this error... I actually don't understand:
Function evaluation failed while attempting to determine output size. The function might contain an error, or might not be well-defined at the automatically-chosen point. To specify output size without function evaluation, use 'OutputSize'.
Here's how my code looks:
Optimization problem:
LDRmax = optimproblem;
Variables
V_inf = optimvar('V_inf','LowerBound',10,'UpperBound',22);
Base_R = optimvar('Base_R ','LowerBound',3,'UpperBound',8);
LA_Ang = optimvar('LA_Ang ','LowerBound',1,'UpperBound',5);
UA_Ang = optimvar('UA_Ang ','LowerBound',1,'UpperBound',5);
UA_Height = optimvar('UA_Height ','LowerBound',0.001,'UpperBound',0.005);
LA_Height = optimvar('LA_Height ','LowerBound',0.001,'UpperBound',0.005);
X1 = optimvar('X1 ','LowerBound',0.09,'UpperBound',0.41);
X2 = optimvar('X2 ','LowerBound',0.09,'UpperBound',0.41);
UA_BA = optimvar('UA_BA ','LowerBound',45,'UpperBound',90);
LA_BA = optimvar('LA_BA ','LowerBound',45,'UpperBound',90);
AoA = optimvar('AoA ','LowerBound',-20,'UpperBound',20);
UA_BL = optimvar('UA_BL ','LowerBound',0.02,'UpperBound',0.1);
LA_BL = optimvar('LA_BL ','LowerBound',0.02,'UpperBound',0.1);
Multi-variate Optimization Expression:
edit ldrobj
% I transfer the objective function to an external function that should
% call and process the models laoded in the workspace. Matlab can't seem to do that
obj = fcn2optimexpr(@ldrobj,Base_R,LA_Ang,UA_Ang,UA_Height,LA_Height,X1,X2,UA_BA,LA_BA,LA_BL,UA_BL)
prob.Objective = obj
LDR = 1/DLR
CM
Supporting functions:
function f = ldrobj(Base_R,LA_Ang,UA_Ang,UA_Height,LA_Height,X1,X2,UA_BA,LA_BA,LA_BL,UA_BL)
x = [Base_R,LA_Ang,UA_Ang,UA_Height,LA_Height,X1,X2,UA_BA,LA_BA,LA_BL,UA_BL];
ALL = ALLGPO.predictFcn(x); % name.predictFcn are the trained models I used for this optimization problem,
AUL = AULGPO.predictFcn(x); % I am calling several of these. The script can't seem to see them
clear x;
x = [V_inf,Base_R,LA_Ang,UA_Ang,LA_Height,X1,X2,UA_BA,LA_BA,AoA,UA_BL,ALL,AUL];
Dyn_Vel = DynVelGPO(x);
clear x;
x = [V_inf,X2,LA_BA,AUL,Dyn_Vel];
y = [V_inf,LA_Ang,UA_Ang,UA_Height,LA_Height,X2,UA_BA,LA_BA,AoA,LA_BL,AUL,ALL,Dyn_Vel];
f = CdGPO(x)/ClGPO(y);
end
Please thank you!
5 Kommentare
Stephen23
am 28 Aug. 2024
The recommended approach is to pass them as input arguments, e.g.:
Antworten (0)
Siehe auch
Kategorien
Mehr zu Surrogate Optimization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!