# Least mean square optimization problem

3 Ansichten (letzte 30 Tage)
Vinod am 28 Apr. 2015
Kommentiert: Torsten am 29 Apr. 2015
I have the following code for least mean square solution for AF:
N = 16;
lambda = 0.1;
dy = 0.5*lambda;
n = 1:N;
yn = (n - 0.5*(N+1))*dy;
AF = [0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.63 0.57 0.29 0.23 0.20 0.17 0.15 0.14 0.12 0.11 0.10 0.10 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.00 0.00 0.00];
A = exp(2*pi*1j/lambda*sin(theta')*yn);
w = A \ fliplr(AF)';
How can I impose that the elements of w be of unit magnitude. ie abs(w(i)) = 1. for all i.
##### 0 Kommentare-2 ältere Kommentare anzeigen-2 ältere Kommentare ausblenden

Melden Sie sich an, um zu kommentieren.

### Antworten (3)

Greig am 28 Apr. 2015
You will have to add a non-linear constraint to the problem. I guess the best option would be to use something like fmincon if you have the optimization toolbox.
##### 1 Kommentar-1 ältere Kommentare anzeigen-1 ältere Kommentare ausblenden
John D'Errico am 28 Apr. 2015
Bearbeitet: John D'Errico am 28 Apr. 2015
No. This is NOT correct at all.
Fmincon cannot handle that class of constraint, since that makes the problem a solve over a finite discrete set. Constraining W to be integers in the set [-1,1] is a nonlinear integer programming problem.

Melden Sie sich an, um zu kommentieren.

John D'Errico am 28 Apr. 2015
This is a nonlinear integer programming problem. The optimization toolbox does not yet have a tool to solve that class of problem.
I think you will find it solvable by the genetic algorithms toolbox though. You can also find fminconset.m on the file exchange, which does allow the parameters to be defined as discrete parameters.
##### 0 Kommentare-2 ältere Kommentare anzeigen-2 ältere Kommentare ausblenden

Melden Sie sich an, um zu kommentieren.

Vinod am 29 Apr. 2015
Bearbeitet: Vinod am 29 Apr. 2015
__This is a nonlinear integer programming problem. The optimization toolbox does not yet have a tool to solve that class of problem.
I think you will find it solvable by the genetic algorithms toolbox though. You can also find fminconset.m on the file exchange, which does allow the parameters to be defined as discrete parameters.__
Can you guide me how can I pose my problem to Genetic algorithm toolbox.
##### 1 Kommentar-1 ältere Kommentare anzeigen-1 ältere Kommentare ausblenden
Torsten am 29 Apr. 2015
I don't think that it's an integer programming problem. The w_i's are complex, I guess. Thus the optimization is over {x^2+y^2=1}.
Could you post your Problem in a mathematical notation, not in MATLAB code ?
I mean could you specify f in
minimize f(w1,...,wn) s.t. |wi| = 1
?
Best wishes
Torsten.

Melden Sie sich an, um zu kommentieren.

### Kategorien

Mehr zu Genetic Algorithm finden Sie in Help Center und File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by