Least mean square optimization problem
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I have the following code for least mean square solution for AF:
thetaDeg = 0:57;
theta = thetaDeg*pi/180;
N = 16;
lambda = 0.1;
dy = 0.5*lambda;
n = 1:N;
yn = (n - 0.5*(N+1))*dy;
AF = [0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.63 0.57 0.29 0.23 0.20 0.17 0.15 0.14 0.12 0.11 0.10 0.10 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.00 0.00 0.00];
A = exp(2*pi*1j/lambda*sin(theta')*yn);
w = A \ fliplr(AF)';
How can I impose that the elements of w be of unit magnitude. ie abs(w(i)) = 1. for all i.
0 Kommentare
Antworten (3)
Greig
am 28 Apr. 2015
You will have to add a non-linear constraint to the problem. I guess the best option would be to use something like fmincon if you have the optimization toolbox.
1 Kommentar
John D'Errico
am 28 Apr. 2015
Bearbeitet: John D'Errico
am 28 Apr. 2015
No. This is NOT correct at all.
Fmincon cannot handle that class of constraint, since that makes the problem a solve over a finite discrete set. Constraining W to be integers in the set [-1,1] is a nonlinear integer programming problem.
John D'Errico
am 28 Apr. 2015
This is a nonlinear integer programming problem. The optimization toolbox does not yet have a tool to solve that class of problem.
I think you will find it solvable by the genetic algorithms toolbox though. You can also find fminconset.m on the file exchange, which does allow the parameters to be defined as discrete parameters.
0 Kommentare
Vinod
am 29 Apr. 2015
Bearbeitet: Vinod
am 29 Apr. 2015
1 Kommentar
Torsten
am 29 Apr. 2015
I don't think that it's an integer programming problem. The w_i's are complex, I guess. Thus the optimization is over {x^2+y^2=1}.
Could you post your Problem in a mathematical notation, not in MATLAB code ?
I mean could you specify f in
minimize f(w1,...,wn) s.t. |wi| = 1
?
Best wishes
Torsten.
Siehe auch
Kategorien
Mehr zu Genetic Algorithm finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!