I enabled fft function in oscillioscope and it saved the data as FFT amplitude (dBV) and frequency domain how ever I want my time domain and ampltude signals original data.

3 Ansichten (letzte 30 Tage)
%%
folder = 'C:\Users\haneu\OneDrive\바탕 화면\New folder (2)';
filename = '550mvp.csv';
data = readtable(fullfile(folder,filename));
frequency = table2array(data(3:end,1));
amplitude = table2array(data(3:end,2));
figure,plot(frequency/1e6,amplitude)
xlim([0,15])
xlabel('Frequency [MHz]'),
grid on,
ylabel('Amplitude[dBV]')

Akzeptierte Antwort

Star Strider
Star Strider am 14 Jul. 2024
Bearbeitet: Star Strider am 14 Jul. 2024
You cannot reliably invert a Fourier transforom unless you also have the phase information. Lacking the phase information, you can still invert it, however the result will not be reliable and may not reflect the actual time-domain signal. The best approach is to record the time-domain signal and calculate the Fourier transform afterwards.
One approach —
RL = readlines('550mvp.csv');
H1 = split(RL(1,:),',');
H2 = split(RL(2,:),',');
T1 = readtable('550mvp.csv', 'HeaderLines',2);
T1.Properties.VariableNames = H1.'
T1 = 4002x2 table
x-axis 1 ___________ __________ -2.46e-05 0.025633 -2.4575e-05 0.019603 -2.455e-05 0.0099925 -2.4525e-05 0.0015126 -2.45e-05 -0.0065276 -2.4475e-05 -0.014568 -2.445e-05 -0.023048 -2.4425e-05 -0.030648 -2.44e-05 -0.036678 -2.4375e-05 -0.042709 -2.435e-05 -0.044719 -2.4325e-05 -0.048739 -2.43e-05 -0.052759 -2.4275e-05 -0.052759 -2.425e-05 -0.056339 -2.4225e-05 -0.052759
NrMissing = nnz(ismissing(T1))
NrMissing = 4
T1 = fillmissing(T1, 'linear');
figure
plot(T1{:,1}, T1{:,2})
grid
xlabel(H2(1,:))
ylabel(H2(2,:))
L = height(T1)
L = 4002
Fn = max(T1{:,1}); % Nyquist Frequency
Fs = Fn*2; % Sampling Frequency
Ts = 1/Fs; % Sampling Interval
Lt = 2*L; % Assumed Length Of Original Time-Domain Signal
t = linspace(0, Lt-1, Lt)/Fs; % Time Vector
v = ifft([T1{:,2}; flip(T1{:,2})],'symmetric');
v = 8004x1
-48.7696 31.5389 -0.9678 -10.0265 0.5044 6.0149 -0.5402 -4.1703 0.5625 2.9814
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
figure
plot(t, v)
grid
xlabel('Time')
ylabel('Volt')
xlim([min(t) max(t)])
figure
plot(t, v)
grid
xlabel('Time')
ylabel('Volt')
xlim([min(t) 1E-6])
This initially re-creates the full ‘original’ two-sided Fourier ttransform by appending a flipped version of the original one-sided Fourier transform to it and then doing the inversion. The highest frequency is assumed to be the Nyquist frequency here, and the sampling frequency and sampling intervals are calculatted from it.
.
EDIT — Corrected typographical errors.
EDIT — (14 Jul 2024 at 13:24)
Forgot the symmetry flag in the ifft call. Added now.
.
  10 Kommentare
Honey
Honey am 16 Jul. 2024
@Star Strider Hi I have a question related to pspectrum.I have csv file related to different voltage data.I used p spectrum function to plot the spectrogram and visualize the data however despite setting frequency limits the 10MHz frequency content wouldnot be displayed and also time axis I believe is not right.I believe there is no consistency in both the data.could you tell why its happening.
folder = 'C:\Users\Min\Desktop\New folder (2)\New folder (2)';
filename = '240mvp1.csv';
data = readtable(fullfile(folder, filename));
t = table2array(data(3:end, 1));
x = table2array(data(3:end, 2));
time_resolution = t(end)-t(1);
fs = 1/mean(diff(t));
pspectrum(x,fs,'spectrogram', ...
'FrequencyLimits',[1e5 7e6],'TimeResolution',time_resolution,'OverlapPercent',90)
% Customize the plot
xlabel('Time (s)');
ylabel('Frequency (MHz)');
colormap("jet")
title('Spectrogram');
colorbar;
Star Strider
Star Strider am 16 Jul. 2024
Since your signals have a time vector, it is best to use it as an appropriate argument. (The only problem is tthat not all the time values are unique, so I use the resample function to create vectors that will work with pspectrum.) Note that tthis makes the time values the same as the argument times. The time values that pspectrum uses are still a bit strange (in my opinion, I have not explored that in detail) however they represent the time ranges in the argument vectors. I also plotted a sample of the original vectors to get an idea of what they looked like. This is close to the way I use pspectrum (generally using the default arguments, though).
Try this —
files = dir('*.csv');
for k = 1:numel(files)
filename = files(k).name
RL = readlines(filename);
H1 = split(RL(1,:),',');
H2 = split(RL(2,:),',');
data = readtable(filename, 'HeaderLines',2);
t = data{:,1};
x = data{:,2};
% time_resolution = t(end)-t(1);
% time_resolution = mean(diff(t));
zxi = find(diff(sign(x)));
fs = 1/mean(diff(t))
[xr, tr] = resample(x, t, fs);
figure
plot(tr, xr)
grid
xlabel('t')
ylabel('Volt')
title(filename)
xlim([-1 1]*2E-6)
figure
% pspectrum(x,fs,'spectrogram', ...
% 'FrequencyLimits',[1e5 7e6],'TimeResolution',time_resolution,'OverlapPercent',90)
pspectrum(xr, tr, 'spectrogram', 'FrequencyLimits',[1e5 7e6], 'OverlapPercent',90)
% Customize the plot
xlabel('Time (s)');
ylabel('Frequency (MHz)');
colormap("jet")
title('Spectrogram');
colorbar;
end
filename = '270mvp3.csv'
fs = 1.0015e+07
filename = '550mvp.csv'
fs = 39980000
.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Get Started with Signal Processing Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by