Disturbance observer for 2DOF robot manipulator
14 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello, I want to design a disturbance observer (DOB) for a 2-degree-of-freedom (2-DOF) robotic manipulator. I'm using MATLAB for simulation and implementation. Could anyone provide guidance or share a detailed example on how to model the 2-DOF robotic manipulator and implement the disturbance observer in MATLAB? Specifically, how to design and implement a DOB for this system and tips on parameter tuning and simulation in MATLAB. Also, can somone tell me if this equations for 2DOF arm are correct:
, where , , ,
From which it follows:
Any help or example code would be greatly appreciated! Thanks.
3 Kommentare
Sam Chak
am 10 Jul. 2024
What is the Disturbance Observer for?
The compact equations you posted are typical 2nd-order ODEs that can be used to describe the motion of many mechanical systems. But the symbols alone cannot describe the 2-DOF Robotic Manipulator.
If the MATLAB codes are available, would you know how to design the Disturbance Observer?
Keep in mind that the Disturbance Observer alone cannot control the motion of the Robotic Manipulator.
Antworten (1)
Francisco J. Triveno Vargas
am 17 Jul. 2024
Verschoben: Sam Chak
am 18 Jul. 2024
@HD, inititally you can use this code:
clc
clear
close all
% Time---------------------------------------------------------------------
tf=10;
N=2000*tf;
Nt=tf/N;
t=0:tf/N:tf;
% DoF----------------------------------------------------------------------
n=2;
% Start and end points-----------------------------------------------------
xi=0;
yi=1.73;
xf=1.5;
yf=0;
% Parameters---------------------------------------------------------------
a1=1;
a2=1;
ac1=a1/2;
ac2=a2/2;
m1=2;
m2=2;
mp=0.25;
g0=9.81;
Izz1=1/12*m1*a1^2;
Izz2=1/12*m2*a2^2;
% Inverse kinematics-------------------------------------------------------
xin2=real(acos((xi^2+yi^2-a1^2-a2^2)/(2*a1*a2)));
xin1=real(atan2(yi,xi))-real(atan2(a2*sin(xin2),(a1+a2*cos(xin2))));
xin3=0;
xin4=0;
xdes2=real(acos((xf^2+yf^2-a1^2-a2^2)/(2*a1*a2)));
xdes1=real(atan2(yf,xf))-real(atan2(a2*sin(xdes2),(a1+a2*cos(xdes2))));
xdes3=0;
xdes4=0;
x_0=[xin1;xin2;xin3;xin4];
x_des=[xdes1;xdes2;xdes3;xdes4];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Solution-----------------------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:1:length(t)
Time=t(i);
x(:,1)=x_0;
% States---------------------------------------------------------------
q1=x(1,i);
q2=x(2,i);
dq1=x(3,i);
dq2=x(4,i);
q=[q1;q2];
dq=[dq1;dq2];
% Dynamics-------------------------------------------------------------
M=[Izz1+Izz2+a1^2*m2+ac1^2*m1+ac2^2*m2+a1^2*mp+a2^2*mp+2*a1*ac2*m2*cos(q2)+2*a1*a2*mp*cos(q2),mp*a2^2+a1*mp*cos(q2)*a2+m2*ac2^2+a1*m2*cos(q2)*ac2+Izz2;...
mp*a2^2+a1*mp*cos(q2)*a2+m2*ac2^2+a1*m2*cos(q2)*ac2+Izz2,mp*a2^2+m2*ac2^2+Izz2];
g=[g0*m2*(ac2*cos(q1+q2)+a1*cos(q1))+g0*mp*(a2*cos(q1+q2)+a1*cos(q1))+ac1*g0*m1*cos(q1);...
g0*cos(q1+q2)*(ac2*m2+a2*mp)];
C=[-a1*dq2*sin(q2)*(ac2*m2+a2*mp),-a1*sin(q2)*(dq1+dq2)*(ac2*m2+a2*mp);...
a1*dq1*sin(q2)*(ac2*m2+a2*mp),0];
Df=diag([0.1,0.1]);
% Input----------------------------------------------------------------
Kp=5*eye(2);
Kd=10*eye(2);
u(:,i)=-Kp*(q-x_des(1:2))-Kd*(dq-x_des(3:4))+g;
% System---------------------------------------------------------------
f=[dq;inv(M)*(u(:,i)-C*dq-g-Df*dq)];
x(:,i+1)=x(:,i)+f*Nt;
% Error----------------------------------------------------------------
xe2=a1*cos(q1)+a2*cos(q1+q2);
ye2=a1*sin(q1)+a2*sin(q1+q2);
error(i)=sqrt((xe2-xf)^2+(ye2-yf)^2);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plots--------------------------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
End_Effector_error_m=error(length(t))
figure(1)
hold all;grid on;box on
plot(t,x(1,1:length(t)),'b','LineWidth',1.5)
line([0,tf],[x_des(1),x_des(1)],'LineStyle','--','Color',[1 0 0])
xlabel('t[s]')
ylabel('q_1(t)[rad]')
figure(2)
hold all;grid on;box on
plot(t,x(2,1:length(t)),'b','LineWidth',1.5)
line([0,tf],[x_des(2),x_des(2)],'LineStyle','--','Color',[1 0 0])
xlabel('t[s]')
ylabel('q_2(t)[rad]')
figure(3)
hold all;grid on;box on
plot(t,x(3,1:length(t)),'b','LineWidth',1.5)
line([0,tf],[x_des(3),x_des(3)],'LineStyle','--','Color',[1 0 0])
xlabel('t[s]')
ylabel('dq_1(t)/dt[rad/s]')
figure(4)
hold all;grid on;box on
plot(t,x(4,1:length(t)),'b','LineWidth',1.5)
line([0,tf],[x_des(4),x_des(4)],'LineStyle','--','Color',[1 0 0])
xlabel('t[s]')
ylabel('dq_2(t)/dt[rad/s]')
figure(5)
hold all;grid on;box on
plot(t,u(1,1:length(t)),'b','LineWidth',1.5)
xlabel('t[s]')
ylabel('u_1(t)')
figure(6)
hold all;grid on;box on
plot(t,u(2,1:length(t)),'b','LineWidth',1.5)
xlabel('t[s]')
ylabel('u_2(t)')
q1=x(1,:);
q2=x(2,:);
xe1=a1*cos(q1);
ye1=a1*sin(q1);
xe2=a1*cos(q1)+a2*cos(q1+q2);
ye2=a1*sin(q1)+a2*sin(q1+q2);
figure(7)
hold all
plot(xi,yi,'*r')
plot(xf,yf,'om')
plot(xe2,ye2,'-k','LineWidth',2)
for i=1:round(N/50):N
line([0;xe1(i)],[0;ye1(i)],'Color',[0 0 1])
line([xe1(i);xe2(i)],[ye1(i);ye2(i)],'Color',[1 0 0])
end
xlabel('x(t)[m]')
ylabel('y(t)[m]')
axis equal
box on
grid on
legend('start point','end point','trajectory')
figure(8)
hold all;grid on;box on
plot(t,error(1:length(t)),'b','LineWidth',1.5)
xlabel('t[s]')
ylabel('|error(t)|')
extracted from https://www.mathworks.com/matlabcentral/fileexchange/166431-pd-gravity-control-2dof-planar-robotic-manipulator
For the observer you need to linearize the nonlinear model of manipulador and use it.
Regards
0 Kommentare
Siehe auch
Kategorien
Mehr zu Robotics finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!