How to connect point by curve instead of line in MTALB plot

13 Ansichten (letzte 30 Tage)
Ram
Ram am 6 Jul. 2024
Beantwortet: Image Analyst am 7 Jul. 2024
Hello, guys. I have some data points. When I plot these points in Matlab, it connects data points by line. However, I want to connect these points using a curve instead of a line graph for good representation. So please suggest to me which function we should use.
Thank you.

Antworten (2)

Hassaan
Hassaan am 6 Jul. 2024
Verschoben: Voss am 6 Jul. 2024
% Example data points
x = [1, 2, 3, 4, 5];
y = [1, 4, 9, 16, 25];
% Interpolate to create a smooth curve
xq = linspace(min(x), max(x), 100); % Create 100 points for a smoother curve
yq = interp1(x, y, xq, 'spline'); % 'spline' interpolation for a smooth curve
% Plotting the curve
plot(xq, yq, 'b-', x, y, 'ro'); % 'b-' for blue curve, 'ro' for red original points
xlabel('X data');
ylabel('Y data');
title('Smooth Curve Through Data Points');
legend('Interpolated Curve', 'Original Data Points');
  4 Kommentare
Ram
Ram am 6 Jul. 2024
@Walter Roberson . The below figure show that the exact plot . The red mark point i want to connect by curve. They are connected by lines right now.
Hassaan
Hassaan am 6 Jul. 2024
% Define the function to compute residuals for circle fitting
function F = fit_circle(c, x, y)
% c(1) and c(2) are the coordinates of the center of the circle
% c(3) is the radius of the circle
F = sqrt((x - c(1)).^2 + (y - c(2)).^2) - c(3);
end
% Example data points (x, y)
x = [-1.7E-05, -3.2E-05, -4.9E-05, -6.1E-05, -7.6E-05, 0.000883, 0.000847, -0.00505, -0.0137, -0.01811, -0.0189, -0.02273, -0.03432, -0.05114, -0.06628, -0.0758, -0.08215, -0.09042, -0.10216, -0.11353, -0.11952, -0.11911, -0.11585, -0.11349, -0.11196, -0.10784, -0.09861, -0.08553, -0.07239, -0.06166, -0.05247, -0.04241, -0.03072, -0.01951, -0.01168];
y = [-0.00016, 2.27E-05, -0.00018, 7.58E-05, -0.00021, 0.009197, -0.00954, -0.04568, -0.0354, -0.00597, -0.00141, -0.03449, -0.07417, -0.08341, -0.05849, -0.03072, -0.02875, -0.04878, -0.06128, -0.04528, -0.01081, 0.014622, 0.015929, 0.006168, 0.008244, 0.030304, 0.056246, 0.066329, 0.056809, 0.04375, 0.042324, 0.052024, 0.057486, 0.04753, 0.025901];
% Initial guess for circle parameters [x_center, y_center, radius]
initial_guess = [0, 0, 0.1];
% Fit the circle using least squares optimization
options = optimoptions('lsqnonlin', 'Display', 'off');
circle_params = lsqnonlin(@(c) fit_circle(c, x, y), initial_guess, [], [], options);
% Calculate points on the fitted circle for plotting
theta = linspace(0, 2*pi, 100);
x_fit = circle_params(1) + circle_params(3) * cos(theta);
y_fit = circle_params(2) + circle_params(3) * sin(theta);
% Plot the original data and the fitted circle
figure;
plot(x, y, 'ro'); hold on; % original data
plot(x_fit, y_fit, 'b-'); % fitted circle
axis equal; % equal scaling
legend('Original Data', 'Fitted Circle');
title('Least Squares Circle Fitting');
xlabel('X');
ylabel('Y');

Melden Sie sich an, um zu kommentieren.


Image Analyst
Image Analyst am 7 Jul. 2024
If you want a smooth envelope going through the convex hull points, like you showed in your example, I suggest first using convhull to find those points, and then use a spline, with a lot more "in between" points/locations to interpolate a smooth curve between them. I'm attaching a spline demo for 1-D and 3-D but it's straight forward to first spline the x data and then spline the y data and plot the new (x,y) and it will go between the convex hull points.

Kategorien

Mehr zu Interpolation finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by