plot a 2D circular intensity map
50 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Sharon
am 30 Mai 2024
Kommentiert: Adam Danz
am 31 Mai 2024
Dear all,
i would like to plot a 2D map showing below. I have x and y coordinates and z being the intensity showing as in different scale in color.
for the areas without the datapoint, i might need to interpolate the gap.
does anyone know how i can do this?
thanks so much for your help
0 Kommentare
Akzeptierte Antwort
Adam Danz
am 30 Mai 2024
Bearbeitet: Adam Danz
am 31 Mai 2024
This demo assumes you have a vector of x-coordinates, a vector of y-coordinates, and a vector of intensity values.
radius = 10;
N = 5000;
r = radius * rand(N,1).^.5;
th = 2*pi * rand(N,1);
x = r.*cos(th); % x coordinate
y = r.*sin(th); % y coordinate
intensity = hypot(10-x,10-y); % intensity values
% interpolate in a grid
resolution = 500; % resolution of the interpolation
[Xq,Yq,intensityq] = griddata(x,y,intensity,...
linspace(min(x),max(x),resolution),...
linspace(min(y),max(y),resolution)');
% Plot results, use interpolated face color
p = pcolor(Xq,Yq,intensityq);
p.FaceColor = 'interp';
p.EdgeColor = 'none';
axis equal
colorbar()
grid on
Compare that to the original data
figure()
scatter(x,y,10,intensity,'filled')
axis equal
grid on
colorbar()
3 Kommentare
Adam Danz
am 31 Mai 2024
Bearbeitet: Adam Danz
am 31 Mai 2024
If you want to expand the regions to fill the range of data, it will result in a square since the range is the min and max along the x and y axes. One easy way to do that is to change the interpolation method in griddata. Below shows the results for "v4" and "nearest" neighbor interpolation methods. The only change is to specify the method in the 6th argument to griddata.
radius = 10;
N = 5000;
r = radius * rand(N,1).^.5;
th = 2*pi * rand(N,1);
x = r.*cos(th); % x coordinate
y = r.*sin(th); % y coordinate
intensity = hypot(10-x,10-y); % intensity values
% interpolate in a grid
resolution = 500; % resolution of the interpolation
[Xq,Yq,intensityq] = griddata(x,y,intensity,...
linspace(min(x),max(x),resolution),...
linspace(min(y),max(y),resolution)', ...
'v4'); % <------------------------------- SPECIFY METHOD
% Plot results, use interpolated face color
p = pcolor(Xq,Yq,intensityq);
p.FaceColor = 'interp';
p.EdgeColor = 'none';
axis equal
colorbar()
grid on
title('griddata interp method: v4')
figure()
resolution = 500; % resolution of the interpolation
[Xq,Yq,intensityq] = griddata(x,y,intensity,...
linspace(min(x),max(x),resolution),...
linspace(min(y),max(y),resolution)', ...
'nearest'); % <------------------------------- SPECIFY METHOD
% Plot results, use interpolated face color
p = pcolor(Xq,Yq,intensityq);
p.FaceColor = 'interp';
p.EdgeColor = 'none';
axis equal
colorbar()
grid on
title('griddata interp method: nearest')
Another method would be to fill in the x, y, and intensity data for each corner of the range of data.
radius = 10;
N = 5000;
r = radius * rand(N,1).^.5;
th = 2*pi * rand(N,1);
x = r.*cos(th); % x coordinate
y = r.*sin(th); % y coordinate
intensity = hypot(10-x,10-y); % intensity values
% Fill in data for each corner of the range of data
% I'll use the minimum intensity for each corner - or you could use 0?
xBounds = [min(x,[],'all'), max(x,[],'all')];
yBounds = [min(y,[],'all'), max(y,[],'all')];
x(end+(1:4)) = xBounds([1 2 2 1]);
y(end+(1:4)) = yBounds([1 1 2 2]);
intensity(end+(1:4)) = min(intensity).*[1,1,1,1];
% interpolate in a grid
figure()
resolution = 500; % resolution of the interpolation
[Xq,Yq,intensityq] = griddata(x,y,intensity,...
linspace(min(x),max(x),resolution),...
linspace(min(y),max(y),resolution)');
% Plot results, use interpolated face color
p = pcolor(Xq,Yq,intensityq);
p.FaceColor = 'interp';
p.EdgeColor = 'none';
axis equal
colorbar()
grid on
title('Assign value to corners')
Adam Danz
am 31 Mai 2024
If you want to keep the data within a circle, instead of interpolating from min to max of data range, you can interpolate based on points distributed within the circle.
opts = detectImportOptions('datapoints.xlsx');
opts = setvartype(opts,'double');
T = readtable('datapoints.xlsx',opts);
x = T.x;
y = T.y;
intensity = T.z;
% Interpolate gridded points within the circle
radius = 10;
center = [mean(x,'all'), mean(y,'all')]; % Compute center of circle if not known
resolution = 1000; % resolution of the interpolation
[xg,yg] = meshgrid(linspace(min(x),max(x),resolution), linspace(min(y),max(y),resolution));
isOut = hypot(xg-center(1), yg-center(2)) > radius;
xg(isOut) = NaN;
yg(isOut) = NaN;
[Xq,Yq,intensityq] = griddata(x,y,intensity,xg,yg);
figure()
% Plot results, use interpolated face color
p = pcolor(Xq,Yq,intensityq);
p.FaceColor = 'interp';
p.EdgeColor = 'none';
axis equal
colorbar()
grid on
title('Sample points within a circle')
Weitere Antworten (1)
Shivani
am 30 Mai 2024
Bearbeitet: Shivani
am 30 Mai 2024
Please note that there are multiple methods for plotting a 2D map in MATLAB, and the most optimal approach depends on the specific characteristics of your data. I might not be able to suggest the most optimal method for plotting the graph described in your question.
Please refer to the code snippet below, which outlines one such approach for plotting a 2D map. This method utilizes `x` and `y` as coordinates, with `z` representing intensity. The snippet also includes code to interpolate the `z` values across the grid.
% Create a grid for x and y coordinates
[X, Y] = meshgrid(linspace(min(x), max(x), 100), linspace(min(y), max(y), 100));
% Interpolate z values on the grid
F = scatteredInterpolant(x', y', z');
Z = F(X, Y);
figure;
imagesc(X(1,:), Y(:,1), Z);
colormap(jet);
colorbar;
axis equal;
The following documentation links provide a deeper insight into the functions I've used in the above code snippet. Kindly refer to them for more information on how to customise the plot to your dataset:
- https://www.mathworks.com/help/matlab/ref/meshgrid.html
- https://www.mathworks.com/help/matlab/ref/scatteredinterpolant.html
- https://www.mathworks.com/help/matlab/math/interpolating-scattered-data.html
- https://www.mathworks.com/help/matlab/ref/imagesc.html
- https://www.mathworks.com/help/matlab/ref/colormap.html
Additionally, you can refer to this MATLAB Answer thread for more details: https://www.mathworks.com/matlabcentral/answers/832583-plot-x-y-2d-and-z-where-z-containing-color-intensity
Hope this helps!
0 Kommentare
Siehe auch
Kategorien
Mehr zu Interpolation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!